Loading…

Two-gap to single-gap superconducting transition on a honeycomb lattice in Ca_{1−x}Sr_{x}AlSi

We report on the structural and microscopic superconducting properties of the Ca_{1−x}Sr_{x}AlSi solid solution. Specifically, we have realized the continuous solid solution, which for all members, other than x=0 (CaAlSi), crystallizes in the AlB_{2}-type structure. For CaAlSi, we present an improve...

Full description

Saved in:
Bibliographic Details
Published in:Physical review research 2021-08, Vol.3 (3), p.033192
Main Authors: Dorota I. Walicka, Zurab Guguchia, Jorge Lago, Olivier Blacque, KeYuan Ma, Huanlong Liu, Rustem Khasanov, Fabian O. von Rohr
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 3
container_start_page 033192
container_title Physical review research
container_volume 3
creator Dorota I. Walicka
Zurab Guguchia
Jorge Lago
Olivier Blacque
KeYuan Ma
Huanlong Liu
Rustem Khasanov
Fabian O. von Rohr
description We report on the structural and microscopic superconducting properties of the Ca_{1−x}Sr_{x}AlSi solid solution. Specifically, we have realized the continuous solid solution, which for all members, other than x=0 (CaAlSi), crystallizes in the AlB_{2}-type structure. For CaAlSi, we present an improved structural model where all Al/Si layers are buckled, leading to a 6-folded structure along the crystallographic c direction. We, furthermore, find indications for the structural instability in the parent compound CaAlSi to enhance the superconductivity across the solid solution. Our investigation of the magnetic penetration depths by means of muon-spin rotation experiments reveals that CaAlSi is a two-gap superconductor, that SrAlSi is a single-gap superconductor, and that there is a continuous transition from one electronic state to the other across the solid solution. Hence, we show that the Ca_{1−x}Sr_{x}AlSi solid solution is a highly tunable two-gap to single-gap superconducting system on a honeycomb lattice, where the superconductivity is strongly connected to a structural instability, i.e., the buckling of the Al/Si layers.
doi_str_mv 10.1103/PhysRevResearch.3.033192
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_35819b8faf474bb6b43288634b1bbb52</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_35819b8faf474bb6b43288634b1bbb52</doaj_id><sourcerecordid>oai_doaj_org_article_35819b8faf474bb6b43288634b1bbb52</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_35819b8faf474bb6b43288634b1bbb523</originalsourceid><addsrcrecordid>eNqtjE9KAzEcRoMgWLR3yAVmzN9xupSi6E7a7sMv08xMSpoMSaodSveuPaIncSg9gvDB43uLhxCmpKSU8MePfkwr87kyyUBs-pKXhHO6YDdoxirBCyorcYfmKe0IIUxSKmo5Q2rzFYoOBpwDTtZ3zlxeOgwmNsFvD02eLM4RfLLZBo-nAe6DN2MT9ho7yNk2BluPl6BO9Pf753heR3U6np_d2j6g2xZcMvMr79H768tm-VZsA-zUEO0e4qgCWHURIXYK4hR0RnFZ04WuW2jFk9C60oKzuq640FRrLRn_z9Yf8GZpBQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Two-gap to single-gap superconducting transition on a honeycomb lattice in Ca_{1−x}Sr_{x}AlSi</title><source>DOAJ Directory of Open Access Journals</source><creator>Dorota I. Walicka ; Zurab Guguchia ; Jorge Lago ; Olivier Blacque ; KeYuan Ma ; Huanlong Liu ; Rustem Khasanov ; Fabian O. von Rohr</creator><creatorcontrib>Dorota I. Walicka ; Zurab Guguchia ; Jorge Lago ; Olivier Blacque ; KeYuan Ma ; Huanlong Liu ; Rustem Khasanov ; Fabian O. von Rohr</creatorcontrib><description>We report on the structural and microscopic superconducting properties of the Ca_{1−x}Sr_{x}AlSi solid solution. Specifically, we have realized the continuous solid solution, which for all members, other than x=0 (CaAlSi), crystallizes in the AlB_{2}-type structure. For CaAlSi, we present an improved structural model where all Al/Si layers are buckled, leading to a 6-folded structure along the crystallographic c direction. We, furthermore, find indications for the structural instability in the parent compound CaAlSi to enhance the superconductivity across the solid solution. Our investigation of the magnetic penetration depths by means of muon-spin rotation experiments reveals that CaAlSi is a two-gap superconductor, that SrAlSi is a single-gap superconductor, and that there is a continuous transition from one electronic state to the other across the solid solution. Hence, we show that the Ca_{1−x}Sr_{x}AlSi solid solution is a highly tunable two-gap to single-gap superconducting system on a honeycomb lattice, where the superconductivity is strongly connected to a structural instability, i.e., the buckling of the Al/Si layers.</description><identifier>EISSN: 2643-1564</identifier><identifier>DOI: 10.1103/PhysRevResearch.3.033192</identifier><language>eng</language><publisher>American Physical Society</publisher><ispartof>Physical review research, 2021-08, Vol.3 (3), p.033192</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2095,27903,27904</link.rule.ids></links><search><creatorcontrib>Dorota I. Walicka</creatorcontrib><creatorcontrib>Zurab Guguchia</creatorcontrib><creatorcontrib>Jorge Lago</creatorcontrib><creatorcontrib>Olivier Blacque</creatorcontrib><creatorcontrib>KeYuan Ma</creatorcontrib><creatorcontrib>Huanlong Liu</creatorcontrib><creatorcontrib>Rustem Khasanov</creatorcontrib><creatorcontrib>Fabian O. von Rohr</creatorcontrib><title>Two-gap to single-gap superconducting transition on a honeycomb lattice in Ca_{1−x}Sr_{x}AlSi</title><title>Physical review research</title><description>We report on the structural and microscopic superconducting properties of the Ca_{1−x}Sr_{x}AlSi solid solution. Specifically, we have realized the continuous solid solution, which for all members, other than x=0 (CaAlSi), crystallizes in the AlB_{2}-type structure. For CaAlSi, we present an improved structural model where all Al/Si layers are buckled, leading to a 6-folded structure along the crystallographic c direction. We, furthermore, find indications for the structural instability in the parent compound CaAlSi to enhance the superconductivity across the solid solution. Our investigation of the magnetic penetration depths by means of muon-spin rotation experiments reveals that CaAlSi is a two-gap superconductor, that SrAlSi is a single-gap superconductor, and that there is a continuous transition from one electronic state to the other across the solid solution. Hence, we show that the Ca_{1−x}Sr_{x}AlSi solid solution is a highly tunable two-gap to single-gap superconducting system on a honeycomb lattice, where the superconductivity is strongly connected to a structural instability, i.e., the buckling of the Al/Si layers.</description><issn>2643-1564</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtjE9KAzEcRoMgWLR3yAVmzN9xupSi6E7a7sMv08xMSpoMSaodSveuPaIncSg9gvDB43uLhxCmpKSU8MePfkwr87kyyUBs-pKXhHO6YDdoxirBCyorcYfmKe0IIUxSKmo5Q2rzFYoOBpwDTtZ3zlxeOgwmNsFvD02eLM4RfLLZBo-nAe6DN2MT9ho7yNk2BluPl6BO9Pf753heR3U6np_d2j6g2xZcMvMr79H768tm-VZsA-zUEO0e4qgCWHURIXYK4hR0RnFZ04WuW2jFk9C60oKzuq640FRrLRn_z9Yf8GZpBQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Dorota I. Walicka</creator><creator>Zurab Guguchia</creator><creator>Jorge Lago</creator><creator>Olivier Blacque</creator><creator>KeYuan Ma</creator><creator>Huanlong Liu</creator><creator>Rustem Khasanov</creator><creator>Fabian O. von Rohr</creator><general>American Physical Society</general><scope>DOA</scope></search><sort><creationdate>20210801</creationdate><title>Two-gap to single-gap superconducting transition on a honeycomb lattice in Ca_{1−x}Sr_{x}AlSi</title><author>Dorota I. Walicka ; Zurab Guguchia ; Jorge Lago ; Olivier Blacque ; KeYuan Ma ; Huanlong Liu ; Rustem Khasanov ; Fabian O. von Rohr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_35819b8faf474bb6b43288634b1bbb523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorota I. Walicka</creatorcontrib><creatorcontrib>Zurab Guguchia</creatorcontrib><creatorcontrib>Jorge Lago</creatorcontrib><creatorcontrib>Olivier Blacque</creatorcontrib><creatorcontrib>KeYuan Ma</creatorcontrib><creatorcontrib>Huanlong Liu</creatorcontrib><creatorcontrib>Rustem Khasanov</creatorcontrib><creatorcontrib>Fabian O. von Rohr</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Physical review research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorota I. Walicka</au><au>Zurab Guguchia</au><au>Jorge Lago</au><au>Olivier Blacque</au><au>KeYuan Ma</au><au>Huanlong Liu</au><au>Rustem Khasanov</au><au>Fabian O. von Rohr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two-gap to single-gap superconducting transition on a honeycomb lattice in Ca_{1−x}Sr_{x}AlSi</atitle><jtitle>Physical review research</jtitle><date>2021-08-01</date><risdate>2021</risdate><volume>3</volume><issue>3</issue><spage>033192</spage><pages>033192-</pages><eissn>2643-1564</eissn><abstract>We report on the structural and microscopic superconducting properties of the Ca_{1−x}Sr_{x}AlSi solid solution. Specifically, we have realized the continuous solid solution, which for all members, other than x=0 (CaAlSi), crystallizes in the AlB_{2}-type structure. For CaAlSi, we present an improved structural model where all Al/Si layers are buckled, leading to a 6-folded structure along the crystallographic c direction. We, furthermore, find indications for the structural instability in the parent compound CaAlSi to enhance the superconductivity across the solid solution. Our investigation of the magnetic penetration depths by means of muon-spin rotation experiments reveals that CaAlSi is a two-gap superconductor, that SrAlSi is a single-gap superconductor, and that there is a continuous transition from one electronic state to the other across the solid solution. Hence, we show that the Ca_{1−x}Sr_{x}AlSi solid solution is a highly tunable two-gap to single-gap superconducting system on a honeycomb lattice, where the superconductivity is strongly connected to a structural instability, i.e., the buckling of the Al/Si layers.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevResearch.3.033192</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2643-1564
ispartof Physical review research, 2021-08, Vol.3 (3), p.033192
issn 2643-1564
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_35819b8faf474bb6b43288634b1bbb52
source DOAJ Directory of Open Access Journals
title Two-gap to single-gap superconducting transition on a honeycomb lattice in Ca_{1−x}Sr_{x}AlSi
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T12%3A08%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two-gap%20to%20single-gap%20superconducting%20transition%20on%20a%20honeycomb%20lattice%20in%20Ca_%7B1%E2%88%92x%7DSr_%7Bx%7DAlSi&rft.jtitle=Physical%20review%20research&rft.au=Dorota%20I.%20Walicka&rft.date=2021-08-01&rft.volume=3&rft.issue=3&rft.spage=033192&rft.pages=033192-&rft.eissn=2643-1564&rft_id=info:doi/10.1103/PhysRevResearch.3.033192&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_35819b8faf474bb6b43288634b1bbb52%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_35819b8faf474bb6b43288634b1bbb523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true