Loading…

Multi-modal Land Cover Classification of Historical Aerial Images and Topographic Maps: A Comparative Study

Knowledge about land cover is relevant for many different applications such as updating topographic information systems, monitoring the environment, and planning future land cover. Particularly for monitoring, it is of interest to be not only aware of current land cover but of past land cover at dif...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS annals of the photogrammetry, remote sensing and spatial information sciences remote sensing and spatial information sciences, 2024-10, Vol.X-4-2024, p.107-115
Main Authors: Dorozynski, Mareike, Rottensteiner, Franz, Thiemann, Frank, Sester, Monika, Dahms, Thorsten, Hovenbitzer, Michael
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 115
container_issue
container_start_page 107
container_title ISPRS annals of the photogrammetry, remote sensing and spatial information sciences
container_volume X-4-2024
creator Dorozynski, Mareike
Rottensteiner, Franz
Thiemann, Frank
Sester, Monika
Dahms, Thorsten
Hovenbitzer, Michael
description Knowledge about land cover is relevant for many different applications such as updating topographic information systems, monitoring the environment, and planning future land cover. Particularly for monitoring, it is of interest to be not only aware of current land cover but of past land cover at different epochs, too. To allow for efficient, computer-aided spatio-temporal analysis, digital land cover information is required explicitly. In this context, historic aerial orthophotos and scanned historic topographic maps can serve as sources of information, in which land cover information is contained implicitly. The present work aims to automatically extract land cover from this data using classification. Thus, a deep learning-based multi-modal classifier is proposed to exploit information from aerial imagery and maps simultaneously for land cover prediction. Two variants of the classifier are trained, utilizing a supervised training strategy, for building segmentation and vegetation segmentation, respectively. Both classifiers are evaluated on independent test sets and compared to their respective two uni-modal counterparts, i.e. an aerial image classifier and a map classifier. Thus, a mean F1-score of 62.2% for multi-modal building segmentation and a mean F1-score of 83.7% for multimodal vegetation segmentation can be achieved. Detailed analysis of quantitative and qualitative results gives hints for promising directions for future research of multi-modal classifiers to further improve the performance of the multi-modal classifier.
doi_str_mv 10.5194/isprs-annals-X-4-2024-107-2024
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_35bfab8ab95b4dfab5f4d79b55b474e9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_35bfab8ab95b4dfab5f4d79b55b474e9</doaj_id><sourcerecordid>3117992301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2054-68181167239f12614be5ceade2cb6b2862ae56414b3db7f35ac2889a01a3eb73</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBov6HgOAtms_NxoNQitpCxYM99BYmu9maum3WZCv4701bEU_z5s2blzCvKG4ouZVUizuf-pgwbLfQJbzEAjPCBKZEHcBJMWJZhTWR5PQfPi-uUloTQqiSWms2Kj5edt3g8SY00KE5bBs0CV8uokkHKfnW1zD4sEWhRVOfhhAz0aGxiz6X2QZWLqH90iL0YRWhf_c1eoE-3aNxNtr0EPP-l0Nvw675vizO2vxdd_VbL4rF0-NiMsXz1-fZZDzHNSNS4LKiFaWlYly3lJVUWCdrB41jtS0tq0oGTpYi87yxquUSalZVGggF7qziF8XsaNsEWJs--g3EbxPAmwMR4spAHHzdOcOlbcFWYLW0oslQtqJR2srcKuF09ro-evUxfO5cGsw67OL-6IZTqvIJOaFZ9XBU1TGkFF379yolZh-XOcRljnGZpRFmn1KeqgPgPy8cjZ4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3117992301</pqid></control><display><type>article</type><title>Multi-modal Land Cover Classification of Historical Aerial Images and Topographic Maps: A Comparative Study</title><source>Publicly Available Content (ProQuest)</source><creator>Dorozynski, Mareike ; Rottensteiner, Franz ; Thiemann, Frank ; Sester, Monika ; Dahms, Thorsten ; Hovenbitzer, Michael</creator><creatorcontrib>Dorozynski, Mareike ; Rottensteiner, Franz ; Thiemann, Frank ; Sester, Monika ; Dahms, Thorsten ; Hovenbitzer, Michael</creatorcontrib><description>Knowledge about land cover is relevant for many different applications such as updating topographic information systems, monitoring the environment, and planning future land cover. Particularly for monitoring, it is of interest to be not only aware of current land cover but of past land cover at different epochs, too. To allow for efficient, computer-aided spatio-temporal analysis, digital land cover information is required explicitly. In this context, historic aerial orthophotos and scanned historic topographic maps can serve as sources of information, in which land cover information is contained implicitly. The present work aims to automatically extract land cover from this data using classification. Thus, a deep learning-based multi-modal classifier is proposed to exploit information from aerial imagery and maps simultaneously for land cover prediction. Two variants of the classifier are trained, utilizing a supervised training strategy, for building segmentation and vegetation segmentation, respectively. Both classifiers are evaluated on independent test sets and compared to their respective two uni-modal counterparts, i.e. an aerial image classifier and a map classifier. Thus, a mean F1-score of 62.2% for multi-modal building segmentation and a mean F1-score of 83.7% for multimodal vegetation segmentation can be achieved. Detailed analysis of quantitative and qualitative results gives hints for promising directions for future research of multi-modal classifiers to further improve the performance of the multi-modal classifier.</description><identifier>ISSN: 2194-9050</identifier><identifier>ISSN: 2194-9042</identifier><identifier>EISSN: 2194-9050</identifier><identifier>DOI: 10.5194/isprs-annals-X-4-2024-107-2024</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Classification ; Comparative studies ; Computer aided mapping ; Digital computers ; Digital imaging ; Digital mapping ; Environmental monitoring ; Image segmentation ; Information systems ; Land cover ; Machine learning ; Monitoring ; Qualitative analysis ; Topographic mapping ; Topographic maps ; Topography ; Vegetation</subject><ispartof>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2024-10, Vol.X-4-2024, p.107-115</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0895-9243</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3117992301?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,25734,27905,27906,36993,44571</link.rule.ids></links><search><creatorcontrib>Dorozynski, Mareike</creatorcontrib><creatorcontrib>Rottensteiner, Franz</creatorcontrib><creatorcontrib>Thiemann, Frank</creatorcontrib><creatorcontrib>Sester, Monika</creatorcontrib><creatorcontrib>Dahms, Thorsten</creatorcontrib><creatorcontrib>Hovenbitzer, Michael</creatorcontrib><title>Multi-modal Land Cover Classification of Historical Aerial Images and Topographic Maps: A Comparative Study</title><title>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences</title><description>Knowledge about land cover is relevant for many different applications such as updating topographic information systems, monitoring the environment, and planning future land cover. Particularly for monitoring, it is of interest to be not only aware of current land cover but of past land cover at different epochs, too. To allow for efficient, computer-aided spatio-temporal analysis, digital land cover information is required explicitly. In this context, historic aerial orthophotos and scanned historic topographic maps can serve as sources of information, in which land cover information is contained implicitly. The present work aims to automatically extract land cover from this data using classification. Thus, a deep learning-based multi-modal classifier is proposed to exploit information from aerial imagery and maps simultaneously for land cover prediction. Two variants of the classifier are trained, utilizing a supervised training strategy, for building segmentation and vegetation segmentation, respectively. Both classifiers are evaluated on independent test sets and compared to their respective two uni-modal counterparts, i.e. an aerial image classifier and a map classifier. Thus, a mean F1-score of 62.2% for multi-modal building segmentation and a mean F1-score of 83.7% for multimodal vegetation segmentation can be achieved. Detailed analysis of quantitative and qualitative results gives hints for promising directions for future research of multi-modal classifiers to further improve the performance of the multi-modal classifier.</description><subject>Classification</subject><subject>Comparative studies</subject><subject>Computer aided mapping</subject><subject>Digital computers</subject><subject>Digital imaging</subject><subject>Digital mapping</subject><subject>Environmental monitoring</subject><subject>Image segmentation</subject><subject>Information systems</subject><subject>Land cover</subject><subject>Machine learning</subject><subject>Monitoring</subject><subject>Qualitative analysis</subject><subject>Topographic mapping</subject><subject>Topographic maps</subject><subject>Topography</subject><subject>Vegetation</subject><issn>2194-9050</issn><issn>2194-9042</issn><issn>2194-9050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBov6HgOAtms_NxoNQitpCxYM99BYmu9maum3WZCv4701bEU_z5s2blzCvKG4ouZVUizuf-pgwbLfQJbzEAjPCBKZEHcBJMWJZhTWR5PQfPi-uUloTQqiSWms2Kj5edt3g8SY00KE5bBs0CV8uokkHKfnW1zD4sEWhRVOfhhAz0aGxiz6X2QZWLqH90iL0YRWhf_c1eoE-3aNxNtr0EPP-l0Nvw675vizO2vxdd_VbL4rF0-NiMsXz1-fZZDzHNSNS4LKiFaWlYly3lJVUWCdrB41jtS0tq0oGTpYi87yxquUSalZVGggF7qziF8XsaNsEWJs--g3EbxPAmwMR4spAHHzdOcOlbcFWYLW0oslQtqJR2srcKuF09ro-evUxfO5cGsw67OL-6IZTqvIJOaFZ9XBU1TGkFF379yolZh-XOcRljnGZpRFmn1KeqgPgPy8cjZ4</recordid><startdate>20241018</startdate><enddate>20241018</enddate><creator>Dorozynski, Mareike</creator><creator>Rottensteiner, Franz</creator><creator>Thiemann, Frank</creator><creator>Sester, Monika</creator><creator>Dahms, Thorsten</creator><creator>Hovenbitzer, Michael</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0895-9243</orcidid></search><sort><creationdate>20241018</creationdate><title>Multi-modal Land Cover Classification of Historical Aerial Images and Topographic Maps: A Comparative Study</title><author>Dorozynski, Mareike ; Rottensteiner, Franz ; Thiemann, Frank ; Sester, Monika ; Dahms, Thorsten ; Hovenbitzer, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2054-68181167239f12614be5ceade2cb6b2862ae56414b3db7f35ac2889a01a3eb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Classification</topic><topic>Comparative studies</topic><topic>Computer aided mapping</topic><topic>Digital computers</topic><topic>Digital imaging</topic><topic>Digital mapping</topic><topic>Environmental monitoring</topic><topic>Image segmentation</topic><topic>Information systems</topic><topic>Land cover</topic><topic>Machine learning</topic><topic>Monitoring</topic><topic>Qualitative analysis</topic><topic>Topographic mapping</topic><topic>Topographic maps</topic><topic>Topography</topic><topic>Vegetation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dorozynski, Mareike</creatorcontrib><creatorcontrib>Rottensteiner, Franz</creatorcontrib><creatorcontrib>Thiemann, Frank</creatorcontrib><creatorcontrib>Sester, Monika</creatorcontrib><creatorcontrib>Dahms, Thorsten</creatorcontrib><creatorcontrib>Hovenbitzer, Michael</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dorozynski, Mareike</au><au>Rottensteiner, Franz</au><au>Thiemann, Frank</au><au>Sester, Monika</au><au>Dahms, Thorsten</au><au>Hovenbitzer, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-modal Land Cover Classification of Historical Aerial Images and Topographic Maps: A Comparative Study</atitle><jtitle>ISPRS annals of the photogrammetry, remote sensing and spatial information sciences</jtitle><date>2024-10-18</date><risdate>2024</risdate><volume>X-4-2024</volume><spage>107</spage><epage>115</epage><pages>107-115</pages><issn>2194-9050</issn><issn>2194-9042</issn><eissn>2194-9050</eissn><abstract>Knowledge about land cover is relevant for many different applications such as updating topographic information systems, monitoring the environment, and planning future land cover. Particularly for monitoring, it is of interest to be not only aware of current land cover but of past land cover at different epochs, too. To allow for efficient, computer-aided spatio-temporal analysis, digital land cover information is required explicitly. In this context, historic aerial orthophotos and scanned historic topographic maps can serve as sources of information, in which land cover information is contained implicitly. The present work aims to automatically extract land cover from this data using classification. Thus, a deep learning-based multi-modal classifier is proposed to exploit information from aerial imagery and maps simultaneously for land cover prediction. Two variants of the classifier are trained, utilizing a supervised training strategy, for building segmentation and vegetation segmentation, respectively. Both classifiers are evaluated on independent test sets and compared to their respective two uni-modal counterparts, i.e. an aerial image classifier and a map classifier. Thus, a mean F1-score of 62.2% for multi-modal building segmentation and a mean F1-score of 83.7% for multimodal vegetation segmentation can be achieved. Detailed analysis of quantitative and qualitative results gives hints for promising directions for future research of multi-modal classifiers to further improve the performance of the multi-modal classifier.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-annals-X-4-2024-107-2024</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0895-9243</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-9050
ispartof ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 2024-10, Vol.X-4-2024, p.107-115
issn 2194-9050
2194-9042
2194-9050
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_35bfab8ab95b4dfab5f4d79b55b474e9
source Publicly Available Content (ProQuest)
subjects Classification
Comparative studies
Computer aided mapping
Digital computers
Digital imaging
Digital mapping
Environmental monitoring
Image segmentation
Information systems
Land cover
Machine learning
Monitoring
Qualitative analysis
Topographic mapping
Topographic maps
Topography
Vegetation
title Multi-modal Land Cover Classification of Historical Aerial Images and Topographic Maps: A Comparative Study
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A07%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-modal%20Land%20Cover%20Classification%20of%20Historical%20Aerial%20Images%20and%20Topographic%20Maps:%20A%20Comparative%20Study&rft.jtitle=ISPRS%20annals%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences&rft.au=Dorozynski,%20Mareike&rft.date=2024-10-18&rft.volume=X-4-2024&rft.spage=107&rft.epage=115&rft.pages=107-115&rft.issn=2194-9050&rft.eissn=2194-9050&rft_id=info:doi/10.5194/isprs-annals-X-4-2024-107-2024&rft_dat=%3Cproquest_doaj_%3E3117992301%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2054-68181167239f12614be5ceade2cb6b2862ae56414b3db7f35ac2889a01a3eb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3117992301&rft_id=info:pmid/&rfr_iscdi=true