Loading…
Inducing a many-body topological state of matter through Coulomb-engineered local interactions
The engineering of artificial systems hosting topological excitations is at the heart of current condensed matter research. Most of these efforts focus on single-particle properties, neglecting possible engineering routes via the modifications of the fundamental many-body interactions. Interestingly...
Saved in:
Published in: | Physical review research 2021-03, Vol.3 (1), p.013265, Article 013265 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The engineering of artificial systems hosting topological excitations is at the heart of current condensed matter research. Most of these efforts focus on single-particle properties, neglecting possible engineering routes via the modifications of the fundamental many-body interactions. Interestingly, recent experimental breakthroughs have shown that Coulomb interactions can be efficiently controlled by substrate screening engineering. Inspired by this success, we propose a simple platform in which topologically nontrivial many-body excitations emerge solely from dielectrically engineered Coulomb interactions in an otherwise topologically trivial single-particle band structure. Furthermore, by performing a realistic microscopic modeling of screening engineering, we demonstrate how our proposal can be realized in one-dimensional systems such as quantum-dot chains. Our results put forward Coulomb engineering as a powerful tool to create topological excitations, with potential applications in a variety of solid-state platforms. |
---|---|
ISSN: | 2643-1564 2643-1564 |
DOI: | 10.1103/PhysRevResearch.3.013265 |