Loading…

Inducing a many-body topological state of matter through Coulomb-engineered local interactions

The engineering of artificial systems hosting topological excitations is at the heart of current condensed matter research. Most of these efforts focus on single-particle properties, neglecting possible engineering routes via the modifications of the fundamental many-body interactions. Interestingly...

Full description

Saved in:
Bibliographic Details
Published in:Physical review research 2021-03, Vol.3 (1), p.013265, Article 013265
Main Authors: Rösner, M., Lado, J. L.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The engineering of artificial systems hosting topological excitations is at the heart of current condensed matter research. Most of these efforts focus on single-particle properties, neglecting possible engineering routes via the modifications of the fundamental many-body interactions. Interestingly, recent experimental breakthroughs have shown that Coulomb interactions can be efficiently controlled by substrate screening engineering. Inspired by this success, we propose a simple platform in which topologically nontrivial many-body excitations emerge solely from dielectrically engineered Coulomb interactions in an otherwise topologically trivial single-particle band structure. Furthermore, by performing a realistic microscopic modeling of screening engineering, we demonstrate how our proposal can be realized in one-dimensional systems such as quantum-dot chains. Our results put forward Coulomb engineering as a powerful tool to create topological excitations, with potential applications in a variety of solid-state platforms.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.3.013265