Loading…

The scheme of wind-storage combined system capacity configuration based on random fuzzy chance constrained bi-level programming

A random fuzzy chance constrained bilevel programming scheme for distributed wind-storage combined system is proposed. The random fuzzy simulation is used to describe the uncertainty of distributed wind power output. The reliability of randomness and ambiguity is taken as the index to evaluate the c...

Full description

Saved in:
Bibliographic Details
Published in:MATEC web of conferences 2018-01, Vol.232, p.4060
Main Authors: OU, Mingyong, WU, Zhenyu, YU, Haifeng, JIANG, Xing, LI, Yinyi, LU, Wenlin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c2590-876ae34ff3bb23792c51eceb1419403171c47e851fafe8f836b1e090b6372b683
container_end_page
container_issue
container_start_page 4060
container_title MATEC web of conferences
container_volume 232
creator OU, Mingyong
WU, Zhenyu
YU, Haifeng
JIANG, Xing
LI, Yinyi
LU, Wenlin
description A random fuzzy chance constrained bilevel programming scheme for distributed wind-storage combined system is proposed. The random fuzzy simulation is used to describe the uncertainty of distributed wind power output. The reliability of randomness and ambiguity is taken as the index to evaluate the capacity allocation scheme of the distributed wind-storage combined system. Considering system power balance, opportunity measurement constraint of static security index and active management (AM) measures, the random fuzzy expectation value of maximum annual profit is set as the upper optimization goal, and the minimum random fuzzy expectation value of the distributed wind power active reduction is set as the lower optimization target. The scheme is constructed by judging whether the static security index of the upper goal satisfies the confidence level of the random fuzzy chance constraint and the coordination of the upper and lower goals. Finally, the random fuzzy simulation, the forward pushback power flow calculation and the genetic algorithm (GA) are applied to solve the model. The simulation result of IEEE 14-bus example shows the effectiveness and superiority of the model and scheme.
doi_str_mv 10.1051/matecconf/201823204060
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_35d71edfbd034cd0b0bc706655c56c6e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_35d71edfbd034cd0b0bc706655c56c6e</doaj_id><sourcerecordid>2488002220</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2590-876ae34ff3bb23792c51eceb1419403171c47e851fafe8f836b1e090b6372b683</originalsourceid><addsrcrecordid>eNpNkUFr3DAQhU1oICHNXwiCnp2MJFuyjyW0aSDQSwK5iZE88mpZS1vJ27C55K_Xmy0hp3kMj-_N8KrqisM1h5bfTDiTcyn6GwG8E1JAAwpOqnMhFK-FVM9fPumz6rKUNQBw2Wvo9Xn19rgiVtyKJmLJs5cQh7rMKeNIzKXJhkgDK_sy08QcbtGFec8OeWHcZZxDisxiWTyLyBiHNDG_e31dPCuM7sCIZc74jrGh3tBf2rBtTmPGaQpx_FqdetwUuvw_L6qnnz8eb3_VD7_v7m-_P9ROtD3UnVZIsvFeWiuk7oVrOTmyvOF9A5Jr7hpNXcs9eup8J5XlBD1YJbWwqpMX1f2ROyRcm20OE-a9SRjM-yLl0WCeg9uQke2gOQ3eDiAbN4AF6zQo1bauVU7Rwvp2ZC1__NlRmc067XJczjei6ToAIQQsLnV0uZxKyeQ_UjmYQ3fmozvzuTv5DyHWkS4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2488002220</pqid></control><display><type>article</type><title>The scheme of wind-storage combined system capacity configuration based on random fuzzy chance constrained bi-level programming</title><source>Publicly Available Content (ProQuest)</source><creator>OU, Mingyong ; WU, Zhenyu ; YU, Haifeng ; JIANG, Xing ; LI, Yinyi ; LU, Wenlin</creator><contributor>Wang, Yansong</contributor><creatorcontrib>OU, Mingyong ; WU, Zhenyu ; YU, Haifeng ; JIANG, Xing ; LI, Yinyi ; LU, Wenlin ; Wang, Yansong</creatorcontrib><description>A random fuzzy chance constrained bilevel programming scheme for distributed wind-storage combined system is proposed. The random fuzzy simulation is used to describe the uncertainty of distributed wind power output. The reliability of randomness and ambiguity is taken as the index to evaluate the capacity allocation scheme of the distributed wind-storage combined system. Considering system power balance, opportunity measurement constraint of static security index and active management (AM) measures, the random fuzzy expectation value of maximum annual profit is set as the upper optimization goal, and the minimum random fuzzy expectation value of the distributed wind power active reduction is set as the lower optimization target. The scheme is constructed by judging whether the static security index of the upper goal satisfies the confidence level of the random fuzzy chance constraint and the coordination of the upper and lower goals. Finally, the random fuzzy simulation, the forward pushback power flow calculation and the genetic algorithm (GA) are applied to solve the model. The simulation result of IEEE 14-bus example shows the effectiveness and superiority of the model and scheme.</description><identifier>ISSN: 2261-236X</identifier><identifier>ISSN: 2274-7214</identifier><identifier>EISSN: 2261-236X</identifier><identifier>DOI: 10.1051/matecconf/201823204060</identifier><language>eng</language><publisher>Les Ulis: EDP Sciences</publisher><subject>Confidence intervals ; Constraints ; Electric power distribution ; Genetic algorithms ; Optimization ; Power flow ; Reliability analysis ; Security ; Simulation ; Wind power</subject><ispartof>MATEC web of conferences, 2018-01, Vol.232, p.4060</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2590-876ae34ff3bb23792c51eceb1419403171c47e851fafe8f836b1e090b6372b683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2488002220?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23921,23922,25131,25744,27915,27916,37003,44581</link.rule.ids></links><search><contributor>Wang, Yansong</contributor><creatorcontrib>OU, Mingyong</creatorcontrib><creatorcontrib>WU, Zhenyu</creatorcontrib><creatorcontrib>YU, Haifeng</creatorcontrib><creatorcontrib>JIANG, Xing</creatorcontrib><creatorcontrib>LI, Yinyi</creatorcontrib><creatorcontrib>LU, Wenlin</creatorcontrib><title>The scheme of wind-storage combined system capacity configuration based on random fuzzy chance constrained bi-level programming</title><title>MATEC web of conferences</title><description>A random fuzzy chance constrained bilevel programming scheme for distributed wind-storage combined system is proposed. The random fuzzy simulation is used to describe the uncertainty of distributed wind power output. The reliability of randomness and ambiguity is taken as the index to evaluate the capacity allocation scheme of the distributed wind-storage combined system. Considering system power balance, opportunity measurement constraint of static security index and active management (AM) measures, the random fuzzy expectation value of maximum annual profit is set as the upper optimization goal, and the minimum random fuzzy expectation value of the distributed wind power active reduction is set as the lower optimization target. The scheme is constructed by judging whether the static security index of the upper goal satisfies the confidence level of the random fuzzy chance constraint and the coordination of the upper and lower goals. Finally, the random fuzzy simulation, the forward pushback power flow calculation and the genetic algorithm (GA) are applied to solve the model. The simulation result of IEEE 14-bus example shows the effectiveness and superiority of the model and scheme.</description><subject>Confidence intervals</subject><subject>Constraints</subject><subject>Electric power distribution</subject><subject>Genetic algorithms</subject><subject>Optimization</subject><subject>Power flow</subject><subject>Reliability analysis</subject><subject>Security</subject><subject>Simulation</subject><subject>Wind power</subject><issn>2261-236X</issn><issn>2274-7214</issn><issn>2261-236X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFr3DAQhU1oICHNXwiCnp2MJFuyjyW0aSDQSwK5iZE88mpZS1vJ27C55K_Xmy0hp3kMj-_N8KrqisM1h5bfTDiTcyn6GwG8E1JAAwpOqnMhFK-FVM9fPumz6rKUNQBw2Wvo9Xn19rgiVtyKJmLJs5cQh7rMKeNIzKXJhkgDK_sy08QcbtGFec8OeWHcZZxDisxiWTyLyBiHNDG_e31dPCuM7sCIZc74jrGh3tBf2rBtTmPGaQpx_FqdetwUuvw_L6qnnz8eb3_VD7_v7m-_P9ROtD3UnVZIsvFeWiuk7oVrOTmyvOF9A5Jr7hpNXcs9eup8J5XlBD1YJbWwqpMX1f2ROyRcm20OE-a9SRjM-yLl0WCeg9uQke2gOQ3eDiAbN4AF6zQo1bauVU7Rwvp2ZC1__NlRmc067XJczjei6ToAIQQsLnV0uZxKyeQ_UjmYQ3fmozvzuTv5DyHWkS4</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>OU, Mingyong</creator><creator>WU, Zhenyu</creator><creator>YU, Haifeng</creator><creator>JIANG, Xing</creator><creator>LI, Yinyi</creator><creator>LU, Wenlin</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>The scheme of wind-storage combined system capacity configuration based on random fuzzy chance constrained bi-level programming</title><author>OU, Mingyong ; WU, Zhenyu ; YU, Haifeng ; JIANG, Xing ; LI, Yinyi ; LU, Wenlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2590-876ae34ff3bb23792c51eceb1419403171c47e851fafe8f836b1e090b6372b683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Confidence intervals</topic><topic>Constraints</topic><topic>Electric power distribution</topic><topic>Genetic algorithms</topic><topic>Optimization</topic><topic>Power flow</topic><topic>Reliability analysis</topic><topic>Security</topic><topic>Simulation</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>OU, Mingyong</creatorcontrib><creatorcontrib>WU, Zhenyu</creatorcontrib><creatorcontrib>YU, Haifeng</creatorcontrib><creatorcontrib>JIANG, Xing</creatorcontrib><creatorcontrib>LI, Yinyi</creatorcontrib><creatorcontrib>LU, Wenlin</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Directory of Open Access Journals</collection><jtitle>MATEC web of conferences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>OU, Mingyong</au><au>WU, Zhenyu</au><au>YU, Haifeng</au><au>JIANG, Xing</au><au>LI, Yinyi</au><au>LU, Wenlin</au><au>Wang, Yansong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The scheme of wind-storage combined system capacity configuration based on random fuzzy chance constrained bi-level programming</atitle><jtitle>MATEC web of conferences</jtitle><date>2018-01-01</date><risdate>2018</risdate><volume>232</volume><spage>4060</spage><pages>4060-</pages><issn>2261-236X</issn><issn>2274-7214</issn><eissn>2261-236X</eissn><abstract>A random fuzzy chance constrained bilevel programming scheme for distributed wind-storage combined system is proposed. The random fuzzy simulation is used to describe the uncertainty of distributed wind power output. The reliability of randomness and ambiguity is taken as the index to evaluate the capacity allocation scheme of the distributed wind-storage combined system. Considering system power balance, opportunity measurement constraint of static security index and active management (AM) measures, the random fuzzy expectation value of maximum annual profit is set as the upper optimization goal, and the minimum random fuzzy expectation value of the distributed wind power active reduction is set as the lower optimization target. The scheme is constructed by judging whether the static security index of the upper goal satisfies the confidence level of the random fuzzy chance constraint and the coordination of the upper and lower goals. Finally, the random fuzzy simulation, the forward pushback power flow calculation and the genetic algorithm (GA) are applied to solve the model. The simulation result of IEEE 14-bus example shows the effectiveness and superiority of the model and scheme.</abstract><cop>Les Ulis</cop><pub>EDP Sciences</pub><doi>10.1051/matecconf/201823204060</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2261-236X
ispartof MATEC web of conferences, 2018-01, Vol.232, p.4060
issn 2261-236X
2274-7214
2261-236X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_35d71edfbd034cd0b0bc706655c56c6e
source Publicly Available Content (ProQuest)
subjects Confidence intervals
Constraints
Electric power distribution
Genetic algorithms
Optimization
Power flow
Reliability analysis
Security
Simulation
Wind power
title The scheme of wind-storage combined system capacity configuration based on random fuzzy chance constrained bi-level programming
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T23%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20scheme%20of%20wind-storage%20combined%20system%20capacity%20configuration%20based%20on%20random%20fuzzy%20chance%20constrained%20bi-level%20programming&rft.jtitle=MATEC%20web%20of%20conferences&rft.au=OU,%20Mingyong&rft.date=2018-01-01&rft.volume=232&rft.spage=4060&rft.pages=4060-&rft.issn=2261-236X&rft.eissn=2261-236X&rft_id=info:doi/10.1051/matecconf/201823204060&rft_dat=%3Cproquest_doaj_%3E2488002220%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2590-876ae34ff3bb23792c51eceb1419403171c47e851fafe8f836b1e090b6372b683%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2488002220&rft_id=info:pmid/&rfr_iscdi=true