Loading…
Forecasting Crude Oil Prices Using Ensemble Empirical Mode Decomposition and Sparse Bayesian Learning
Crude oil is one of the most important types of energy and its prices have a great impact on the global economy. Therefore, forecasting crude oil prices accurately is an essential task for investors, governments, enterprises and even researchers. However, due to the extreme nonlinearity and nonstati...
Saved in:
Published in: | Energies (Basel) 2018-07, Vol.11 (7), p.1882 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Crude oil is one of the most important types of energy and its prices have a great impact on the global economy. Therefore, forecasting crude oil prices accurately is an essential task for investors, governments, enterprises and even researchers. However, due to the extreme nonlinearity and nonstationarity of crude oil prices, it is a challenging task for the traditional methodologies of time series forecasting to handle it. To address this issue, in this paper, we propose a novel approach that incorporates ensemble empirical mode decomposition (EEMD), sparse Bayesian learning (SBL), and addition, namely EEMD-SBL-ADD, for forecasting crude oil prices, following the “decomposition and ensemble” framework that is widely used in time series analysis. Specifically, EEMD is first used to decompose the raw crude oil price data into components, including several intrinsic mode functions (IMFs) and one residue. Then, we apply SBL to build an individual forecasting model for each component. Finally, the individual forecasting results are aggregated as the final forecasting price by simple addition. To validate the performance of the proposed EEMD-SBL-ADD, we use the publicly-available West Texas Intermediate (WTI) and Brent crude oil spot prices as experimental data. The experimental results demonstrate that the EEMD-SBL-ADD outperforms some state-of-the-art forecasting methodologies in terms of several evaluation criteria such as the mean absolute percent error (MAPE), the root mean squared error (RMSE), the directional statistic (Dstat), the Diebold–Mariano (DM) test, the model confidence set (MCS) test and running time, indicating that the proposed EEMD-SBL-ADD is promising for forecasting crude oil prices. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en11071882 |