Loading…

Autophagic degradation of CNS myelin maintains axon integrity

(Macro)autophagy is a major lysosome-dependent degradation mechanism which engulfs, removes and recycles unwanted cytoplasmic material, including damaged organelles and toxic protein aggregates. Although a few studies implicate autophagy in CNS demyelinating pathologies, its role, particularly in ma...

Full description

Saved in:
Bibliographic Details
Published in:Cell Stress 2022-12, Vol.6 (12), p.93-107
Main Authors: Ktena, Niki, Kaplanis, Stefanos Ioannis, Kolotuev, Irina, Georgilis, Alexandros, Kallergi, Emmanouela, Stavroulaki, Vasiliki, Nikoletopoulou, Vassiliki, Savvaki, Maria, Karagogeos, Domna
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(Macro)autophagy is a major lysosome-dependent degradation mechanism which engulfs, removes and recycles unwanted cytoplasmic material, including damaged organelles and toxic protein aggregates. Although a few studies implicate autophagy in CNS demyelinating pathologies, its role, particularly in mature oligodendrocytes and CNS myelin, remains poorly studied. Here, using both pharmacological and genetic inhibition of the autophagic machinery, we provide evidence that autophagy is an essential mechanism for oligodendrocyte maturation . Our study reveals that two core myelin proteins, namely proteolipid protein (PLP) and myelin basic protein (MBP) are incorporated into autophagosomes in oligodendrocytes, resulting in their degradation. Furthermore, we ablated , a core gene of the autophagic machinery, specifically in myelinating glial cells by tamoxifen administration ( ) and showed that myelin maintenance is perturbed, leading to PLP accumulation. Significant morphological defects in myelin membrane such as decompaction accompanied with increased axonal degeneration are observed. As a result, the mice exhibit behavioral deficits. In summary, our data highlight that the maintenance of adult myelin homeostasis in the CNS requires the involvement of a fully functional autophagic machinery.
ISSN:2523-0204
2523-0204
DOI:10.15698/cst2022.12.274