Loading…
A proof of Zhil'tsov's theorem on decidability of equational theory of epigroups
Epigroups are semigroups equipped with an additional unary operation called pseudoinversion. Each finite semigroup can be considered as an epigroup. We prove the following theorem announced by Zhil'tsov in 2000: the equational theory of the class of all epigroups coincides with the equational t...
Saved in:
Published in: | Discrete mathematics and theoretical computer science 2016-06, Vol.17 no. 3 (Combinatorics), p.179-202 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 202 |
container_issue | Combinatorics |
container_start_page | 179 |
container_title | Discrete mathematics and theoretical computer science |
container_volume | 17 no. 3 |
creator | Mikhaylova, Inna |
description | Epigroups are semigroups equipped with an additional unary operation called pseudoinversion. Each finite semigroup can be considered as an epigroup. We prove the following theorem announced by Zhil'tsov in 2000: the equational theory of the class of all epigroups coincides with the equational theory of the class of all finite epigroups and is decidable. We show that the theory is not finitely based but provide a transparent infinite basis for it. |
doi_str_mv | 10.46298/dmtcs.2155 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_35f66c21cfcb487783e24f889bd0d696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_35f66c21cfcb487783e24f889bd0d696</doaj_id><sourcerecordid>4178420911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-22382a9d08be789b3b051c7769c0719427d03c2e96ecc1adb177a5f769d96dbb3</originalsourceid><addsrcrecordid>eNpVkUtLAzEYRQdRsFZX_oEBF0Vkah6T17IUtUJBF7pxEzJJpk2ZNtMkLfTfO-2IKAQSbg7ng-9m2S0E45IiwR_NOuk4RpCQs2wAMSUFBwSc_3lfZlcxrgCASJRskL1P8jZ4X-fd-Vq6ZpSi349inpbWB7vO_SY3VjujKte4dDhidrtTyfmNanqqD1u3CH7XxuvsolZNtDc_9zD7fH76mM6K-dvL63QyLzQmNBUIYY6UMIBXlnFR4QoQqBmjQgMGRYmYAVgjK6jVGipTQcYUqbt_I6ipKjzMXnuv8Wol2-DWKhykV06eAh8WUoXkdGMlJjWlGkFd66rkjHFsUVnzbqoBhgraue5711I1_1SzyVweMwAxQbwUe9ixdz3brW27szHJld-FbhlRQg45Rphx0lEPPaWDjzHY-lcLgTxVJU9VyWNV-Bte3oW1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1818323785</pqid></control><display><type>article</type><title>A proof of Zhil'tsov's theorem on decidability of equational theory of epigroups</title><source>Publicly Available Content (ProQuest)</source><creator>Mikhaylova, Inna</creator><creatorcontrib>Mikhaylova, Inna</creatorcontrib><description>Epigroups are semigroups equipped with an additional unary operation called pseudoinversion. Each finite semigroup can be considered as an epigroup. We prove the following theorem announced by Zhil'tsov in 2000: the equational theory of the class of all epigroups coincides with the equational theory of the class of all finite epigroups and is decidable. We show that the theory is not finitely based but provide a transparent infinite basis for it.</description><identifier>ISSN: 1365-8050</identifier><identifier>ISSN: 1462-7264</identifier><identifier>EISSN: 1365-8050</identifier><identifier>DOI: 10.46298/dmtcs.2155</identifier><language>eng</language><publisher>Nancy: DMTCS</publisher><subject>[info.info-dm] computer science [cs]/discrete mathematics [cs.dm] ; Combinatorics ; Computer Science ; decidability of equational theory ; Discrete Mathematics ; epigroup ; finite basis proble ; finite semigroup ; Theorems</subject><ispartof>Discrete mathematics and theoretical computer science, 2016-06, Vol.17 no. 3 (Combinatorics), p.179-202</ispartof><rights>Copyright DMTCS 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1818323785?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,44590</link.rule.ids><backlink>$$Uhttps://inria.hal.science/hal-01352849$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mikhaylova, Inna</creatorcontrib><title>A proof of Zhil'tsov's theorem on decidability of equational theory of epigroups</title><title>Discrete mathematics and theoretical computer science</title><description>Epigroups are semigroups equipped with an additional unary operation called pseudoinversion. Each finite semigroup can be considered as an epigroup. We prove the following theorem announced by Zhil'tsov in 2000: the equational theory of the class of all epigroups coincides with the equational theory of the class of all finite epigroups and is decidable. We show that the theory is not finitely based but provide a transparent infinite basis for it.</description><subject>[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]</subject><subject>Combinatorics</subject><subject>Computer Science</subject><subject>decidability of equational theory</subject><subject>Discrete Mathematics</subject><subject>epigroup</subject><subject>finite basis proble</subject><subject>finite semigroup</subject><subject>Theorems</subject><issn>1365-8050</issn><issn>1462-7264</issn><issn>1365-8050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkUtLAzEYRQdRsFZX_oEBF0Vkah6T17IUtUJBF7pxEzJJpk2ZNtMkLfTfO-2IKAQSbg7ng-9m2S0E45IiwR_NOuk4RpCQs2wAMSUFBwSc_3lfZlcxrgCASJRskL1P8jZ4X-fd-Vq6ZpSi349inpbWB7vO_SY3VjujKte4dDhidrtTyfmNanqqD1u3CH7XxuvsolZNtDc_9zD7fH76mM6K-dvL63QyLzQmNBUIYY6UMIBXlnFR4QoQqBmjQgMGRYmYAVgjK6jVGipTQcYUqbt_I6ipKjzMXnuv8Wol2-DWKhykV06eAh8WUoXkdGMlJjWlGkFd66rkjHFsUVnzbqoBhgraue5711I1_1SzyVweMwAxQbwUe9ixdz3brW27szHJld-FbhlRQg45Rphx0lEPPaWDjzHY-lcLgTxVJU9VyWNV-Bte3oW1</recordid><startdate>20160607</startdate><enddate>20160607</enddate><creator>Mikhaylova, Inna</creator><general>DMTCS</general><general>Discrete Mathematics & Theoretical Computer Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>1XC</scope><scope>VOOES</scope><scope>DOA</scope></search><sort><creationdate>20160607</creationdate><title>A proof of Zhil'tsov's theorem on decidability of equational theory of epigroups</title><author>Mikhaylova, Inna</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-22382a9d08be789b3b051c7769c0719427d03c2e96ecc1adb177a5f769d96dbb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]</topic><topic>Combinatorics</topic><topic>Computer Science</topic><topic>decidability of equational theory</topic><topic>Discrete Mathematics</topic><topic>epigroup</topic><topic>finite basis proble</topic><topic>finite semigroup</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhaylova, Inna</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Continental Europe Database</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Discrete mathematics and theoretical computer science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhaylova, Inna</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A proof of Zhil'tsov's theorem on decidability of equational theory of epigroups</atitle><jtitle>Discrete mathematics and theoretical computer science</jtitle><date>2016-06-07</date><risdate>2016</risdate><volume>17 no. 3</volume><issue>Combinatorics</issue><spage>179</spage><epage>202</epage><pages>179-202</pages><issn>1365-8050</issn><issn>1462-7264</issn><eissn>1365-8050</eissn><abstract>Epigroups are semigroups equipped with an additional unary operation called pseudoinversion. Each finite semigroup can be considered as an epigroup. We prove the following theorem announced by Zhil'tsov in 2000: the equational theory of the class of all epigroups coincides with the equational theory of the class of all finite epigroups and is decidable. We show that the theory is not finitely based but provide a transparent infinite basis for it.</abstract><cop>Nancy</cop><pub>DMTCS</pub><doi>10.46298/dmtcs.2155</doi><tpages>24</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1365-8050 |
ispartof | Discrete mathematics and theoretical computer science, 2016-06, Vol.17 no. 3 (Combinatorics), p.179-202 |
issn | 1365-8050 1462-7264 1365-8050 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_35f66c21cfcb487783e24f889bd0d696 |
source | Publicly Available Content (ProQuest) |
subjects | [info.info-dm] computer science [cs]/discrete mathematics [cs.dm] Combinatorics Computer Science decidability of equational theory Discrete Mathematics epigroup finite basis proble finite semigroup Theorems |
title | A proof of Zhil'tsov's theorem on decidability of equational theory of epigroups |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A26%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20proof%20of%20Zhil'tsov's%20theorem%20on%20decidability%20of%20equational%20theory%20of%20epigroups&rft.jtitle=Discrete%20mathematics%20and%20theoretical%20computer%20science&rft.au=Mikhaylova,%20Inna&rft.date=2016-06-07&rft.volume=17%20no.%203&rft.issue=Combinatorics&rft.spage=179&rft.epage=202&rft.pages=179-202&rft.issn=1365-8050&rft.eissn=1365-8050&rft_id=info:doi/10.46298/dmtcs.2155&rft_dat=%3Cproquest_doaj_%3E4178420911%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-22382a9d08be789b3b051c7769c0719427d03c2e96ecc1adb177a5f769d96dbb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1818323785&rft_id=info:pmid/&rfr_iscdi=true |