Loading…

A solid polymer electrolyte for aluminum ion conduction

We report on the synthesis and characterization of a solid polymer electrolyte for aluminum ion conduction. The solid polymer electrolyte is produced via the copolymerization of a low molecular weight polytetrahydrofuran and a cycloaliphatic epoxy. The crosslinked copolymer is swollen in THF solutio...

Full description

Saved in:
Bibliographic Details
Published in:Results in physics 2018-09, Vol.10, p.529-531
Main Authors: Yao, Tianyi, Genier, Francielli S., Biria, Saeid, Hosein, Ian D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on the synthesis and characterization of a solid polymer electrolyte for aluminum ion conduction. The solid polymer electrolyte is produced via the copolymerization of a low molecular weight polytetrahydrofuran and a cycloaliphatic epoxy. The crosslinked copolymer is swollen in THF solutions of different concentrations of aluminum nitrate as the aluminum ion source. The conductivity as a function of concentration is measured via AC impedance spectroscopy over a temperature range of 20–110 °C. We attain conductivities that increase with salt loading, reaching a value of 2.86 × 10−5 S·cm−1. Thermogravimetric analysis shows the electrolytes are stable up to 150 °C. Raman spectroscopy reveals complete dissociation of the aluminum nitrate salt in the electrolyte over the concentration range explored. This study establishes a polymer system and synthetic route towards solid polymer electrolytes for aluminum ion conduction, for the development of all solid-state aluminum ion batteries.
ISSN:2211-3797
2211-3797
DOI:10.1016/j.rinp.2018.07.001