Loading…

Solvent assisted evolution and growth mechanism of zero to three dimensional ZnO nanostructures for dye sensitized solar cell applications

We report the structural engineering of ZnO nanostructures by a consistent solution method using distinct solvents such as ethylene glycol, 1-butanol, acetic acid and water. The growth kinetics are found to depend strongly on the physicochemical properties of the solvent and zeta potential of the co...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-03, Vol.11 (1), p.6159-14, Article 6159
Main Authors: Ramya, M., Nideep, T. K., Nampoori, V. P. N., Kailasnath, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report the structural engineering of ZnO nanostructures by a consistent solution method using distinct solvents such as ethylene glycol, 1-butanol, acetic acid and water. The growth kinetics are found to depend strongly on the physicochemical properties of the solvent and zeta potential of the colloidal solution. Furthermore, the resulting nanostructures as a photoanode material, displayed a prominent structure dependent property in determining the efficiency of dye-sensitized solar cells (DSSCs). The fabricated solar cell with ZnO nanostructures based photoanode exhibited improved conversion efficiency. Moreover, the nanoflower based DSSCs showed a higher conversion efficiency of 4.1% compared to the other structures. The excellent performance of ZnO nanoflower is attributed to its better light-harvesting ability and increased resistance to charge-recombination. Therefore ZnO nanostructures can be a promising alternative for TiO 2 in DSSCs. These findings provide new insight into the simple, low cost and consistent synthetic strategies for ZnO nanostructures and its outstanding performance as a photoanode material in DSSCs.
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-021-85701-9