Loading…

Magnetic nanofluid behavior including an immersed rotating conductive cylinder: finite element analysis

In this paper, numerical Galerkin Finite Element Method (GFEM) is applied for conjugate heat-transfer of a rotating cylinder immersed in Fe 3 O 4 -water nanofluid under the heat-flux and magnetic field. The outer boundaries of the cavity were maintained at low temperatures while beside the cylinder...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-02, Vol.11 (1), p.4463-4463, Article 4463
Main Authors: Hamzah, Hameed K., Ali, Farooq H., Hatami, M., Jing, D., Jabbar, Mohammed Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423
cites cdi_FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423
container_end_page 4463
container_issue 1
container_start_page 4463
container_title Scientific reports
container_volume 11
creator Hamzah, Hameed K.
Ali, Farooq H.
Hatami, M.
Jing, D.
Jabbar, Mohammed Y.
description In this paper, numerical Galerkin Finite Element Method (GFEM) is applied for conjugate heat-transfer of a rotating cylinder immersed in Fe 3 O 4 -water nanofluid under the heat-flux and magnetic field. The outer boundaries of the cavity were maintained at low temperatures while beside the cylinder were insulated. It is assumed that the cylinder rotates in both clockwise and counter-clockwise directions. The dimensionless governing equations such as velocity, pressure, and temperature formulation were analyzed by the GFEM. The results were evaluated using the governing parameters such as nanoparticles (NPs) volume fraction, Hartmann and Rayleigh numbers, magnetic field angle and NPs shapes. As a main result, the average Nusselt number increases by increasing the NPs volume fraction, inclination angle and thermal conductivity ratios, while increasing the Hartmann number decreased the Nusselt number. Furthermore, platelet NPs had the maximum average Nusselt number and spherical NPs made the minimum values of Nusselt numbers among examined NPs shapes.
doi_str_mv 10.1038/s41598-021-83944-0
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3609b262effc45368eea9f29d59d283a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3609b262effc45368eea9f29d59d283a</doaj_id><sourcerecordid>2492787054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEotXSP8ABReLCJeD42xyQUMVHpSIuvVtee5J65djFTlbaf493U0rLAR9sa-adxx77bZrXPXrfIyI_FNozJTuE-04SRWmHnjXnGFHWYYLx80f7s-ailB2qg2FFe_WyOSOEYyEIP2_GH2aMMHvbRhPTEBbv2i3cmr1PufXRhsX5OLYmtn6aIBdwbU6zmY9Bm6Jb7Oz30NpD8NFB_tgOPvoZWggwQZxroQmH4sur5sVgQoGL-3XT3Hz9cnP5vbv--e3q8vN1ZxlFc8cpIiAUV84SCT3tsWA9OLBGcuGUkG6oE9kyIxkSjjkBmCvOVY8dp5hsmqsV65LZ6bvsJ5MPOhmvT4GUR21y7TaAJhypLeYYhsFSRrgEMGrAyjHlsCSmsj6trLtlO4GztZ1swhPo00z0t3pMey0UorWHCnh3D8jp1wJl1pMvFkIwEdJSNKaKUCZR_c9N8_Yf6S4tub7dSYWFFIjRqsKryuZUSobh4TI90kdX6NUVurpCn1yhj-g3j9t4KPnjgSogq6DUVBwh_z37P9jfrxXDhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492787054</pqid></control><display><type>article</type><title>Magnetic nanofluid behavior including an immersed rotating conductive cylinder: finite element analysis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hamzah, Hameed K. ; Ali, Farooq H. ; Hatami, M. ; Jing, D. ; Jabbar, Mohammed Y.</creator><creatorcontrib>Hamzah, Hameed K. ; Ali, Farooq H. ; Hatami, M. ; Jing, D. ; Jabbar, Mohammed Y.</creatorcontrib><description>In this paper, numerical Galerkin Finite Element Method (GFEM) is applied for conjugate heat-transfer of a rotating cylinder immersed in Fe 3 O 4 -water nanofluid under the heat-flux and magnetic field. The outer boundaries of the cavity were maintained at low temperatures while beside the cylinder were insulated. It is assumed that the cylinder rotates in both clockwise and counter-clockwise directions. The dimensionless governing equations such as velocity, pressure, and temperature formulation were analyzed by the GFEM. The results were evaluated using the governing parameters such as nanoparticles (NPs) volume fraction, Hartmann and Rayleigh numbers, magnetic field angle and NPs shapes. As a main result, the average Nusselt number increases by increasing the NPs volume fraction, inclination angle and thermal conductivity ratios, while increasing the Hartmann number decreased the Nusselt number. Furthermore, platelet NPs had the maximum average Nusselt number and spherical NPs made the minimum values of Nusselt numbers among examined NPs shapes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-83944-0</identifier><identifier>PMID: 33627736</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/4073 ; 639/166/898 ; 639/166/988 ; Finite element method ; Humanities and Social Sciences ; Iron oxides ; Low temperature ; Magnetic fields ; Magnetism ; multidisciplinary ; Nanoparticles ; Science ; Science (multidisciplinary) ; Thermal conductivity</subject><ispartof>Scientific reports, 2021-02, Vol.11 (1), p.4463-4463, Article 4463</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423</citedby><cites>FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2492787054/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2492787054?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33627736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamzah, Hameed K.</creatorcontrib><creatorcontrib>Ali, Farooq H.</creatorcontrib><creatorcontrib>Hatami, M.</creatorcontrib><creatorcontrib>Jing, D.</creatorcontrib><creatorcontrib>Jabbar, Mohammed Y.</creatorcontrib><title>Magnetic nanofluid behavior including an immersed rotating conductive cylinder: finite element analysis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In this paper, numerical Galerkin Finite Element Method (GFEM) is applied for conjugate heat-transfer of a rotating cylinder immersed in Fe 3 O 4 -water nanofluid under the heat-flux and magnetic field. The outer boundaries of the cavity were maintained at low temperatures while beside the cylinder were insulated. It is assumed that the cylinder rotates in both clockwise and counter-clockwise directions. The dimensionless governing equations such as velocity, pressure, and temperature formulation were analyzed by the GFEM. The results were evaluated using the governing parameters such as nanoparticles (NPs) volume fraction, Hartmann and Rayleigh numbers, magnetic field angle and NPs shapes. As a main result, the average Nusselt number increases by increasing the NPs volume fraction, inclination angle and thermal conductivity ratios, while increasing the Hartmann number decreased the Nusselt number. Furthermore, platelet NPs had the maximum average Nusselt number and spherical NPs made the minimum values of Nusselt numbers among examined NPs shapes.</description><subject>639/166/4073</subject><subject>639/166/898</subject><subject>639/166/988</subject><subject>Finite element method</subject><subject>Humanities and Social Sciences</subject><subject>Iron oxides</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thermal conductivity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEotXSP8ABReLCJeD42xyQUMVHpSIuvVtee5J65djFTlbaf493U0rLAR9sa-adxx77bZrXPXrfIyI_FNozJTuE-04SRWmHnjXnGFHWYYLx80f7s-ailB2qg2FFe_WyOSOEYyEIP2_GH2aMMHvbRhPTEBbv2i3cmr1PufXRhsX5OLYmtn6aIBdwbU6zmY9Bm6Jb7Oz30NpD8NFB_tgOPvoZWggwQZxroQmH4sur5sVgQoGL-3XT3Hz9cnP5vbv--e3q8vN1ZxlFc8cpIiAUV84SCT3tsWA9OLBGcuGUkG6oE9kyIxkSjjkBmCvOVY8dp5hsmqsV65LZ6bvsJ5MPOhmvT4GUR21y7TaAJhypLeYYhsFSRrgEMGrAyjHlsCSmsj6trLtlO4GztZ1swhPo00z0t3pMey0UorWHCnh3D8jp1wJl1pMvFkIwEdJSNKaKUCZR_c9N8_Yf6S4tub7dSYWFFIjRqsKryuZUSobh4TI90kdX6NUVurpCn1yhj-g3j9t4KPnjgSogq6DUVBwh_z37P9jfrxXDhA</recordid><startdate>20210224</startdate><enddate>20210224</enddate><creator>Hamzah, Hameed K.</creator><creator>Ali, Farooq H.</creator><creator>Hatami, M.</creator><creator>Jing, D.</creator><creator>Jabbar, Mohammed Y.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210224</creationdate><title>Magnetic nanofluid behavior including an immersed rotating conductive cylinder: finite element analysis</title><author>Hamzah, Hameed K. ; Ali, Farooq H. ; Hatami, M. ; Jing, D. ; Jabbar, Mohammed Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/166/4073</topic><topic>639/166/898</topic><topic>639/166/988</topic><topic>Finite element method</topic><topic>Humanities and Social Sciences</topic><topic>Iron oxides</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamzah, Hameed K.</creatorcontrib><creatorcontrib>Ali, Farooq H.</creatorcontrib><creatorcontrib>Hatami, M.</creatorcontrib><creatorcontrib>Jing, D.</creatorcontrib><creatorcontrib>Jabbar, Mohammed Y.</creatorcontrib><collection>SpringerOpen website</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamzah, Hameed K.</au><au>Ali, Farooq H.</au><au>Hatami, M.</au><au>Jing, D.</au><au>Jabbar, Mohammed Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic nanofluid behavior including an immersed rotating conductive cylinder: finite element analysis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-02-24</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>4463</spage><epage>4463</epage><pages>4463-4463</pages><artnum>4463</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this paper, numerical Galerkin Finite Element Method (GFEM) is applied for conjugate heat-transfer of a rotating cylinder immersed in Fe 3 O 4 -water nanofluid under the heat-flux and magnetic field. The outer boundaries of the cavity were maintained at low temperatures while beside the cylinder were insulated. It is assumed that the cylinder rotates in both clockwise and counter-clockwise directions. The dimensionless governing equations such as velocity, pressure, and temperature formulation were analyzed by the GFEM. The results were evaluated using the governing parameters such as nanoparticles (NPs) volume fraction, Hartmann and Rayleigh numbers, magnetic field angle and NPs shapes. As a main result, the average Nusselt number increases by increasing the NPs volume fraction, inclination angle and thermal conductivity ratios, while increasing the Hartmann number decreased the Nusselt number. Furthermore, platelet NPs had the maximum average Nusselt number and spherical NPs made the minimum values of Nusselt numbers among examined NPs shapes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33627736</pmid><doi>10.1038/s41598-021-83944-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-02, Vol.11 (1), p.4463-4463, Article 4463
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3609b262effc45368eea9f29d59d283a
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166/4073
639/166/898
639/166/988
Finite element method
Humanities and Social Sciences
Iron oxides
Low temperature
Magnetic fields
Magnetism
multidisciplinary
Nanoparticles
Science
Science (multidisciplinary)
Thermal conductivity
title Magnetic nanofluid behavior including an immersed rotating conductive cylinder: finite element analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20nanofluid%20behavior%20including%20an%20immersed%20rotating%20conductive%20cylinder:%20finite%20element%20analysis&rft.jtitle=Scientific%20reports&rft.au=Hamzah,%20Hameed%20K.&rft.date=2021-02-24&rft.volume=11&rft.issue=1&rft.spage=4463&rft.epage=4463&rft.pages=4463-4463&rft.artnum=4463&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-83944-0&rft_dat=%3Cproquest_doaj_%3E2492787054%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492787054&rft_id=info:pmid/33627736&rfr_iscdi=true