Loading…
Magnetic nanofluid behavior including an immersed rotating conductive cylinder: finite element analysis
In this paper, numerical Galerkin Finite Element Method (GFEM) is applied for conjugate heat-transfer of a rotating cylinder immersed in Fe 3 O 4 -water nanofluid under the heat-flux and magnetic field. The outer boundaries of the cavity were maintained at low temperatures while beside the cylinder...
Saved in:
Published in: | Scientific reports 2021-02, Vol.11 (1), p.4463-4463, Article 4463 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423 |
---|---|
cites | cdi_FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423 |
container_end_page | 4463 |
container_issue | 1 |
container_start_page | 4463 |
container_title | Scientific reports |
container_volume | 11 |
creator | Hamzah, Hameed K. Ali, Farooq H. Hatami, M. Jing, D. Jabbar, Mohammed Y. |
description | In this paper, numerical Galerkin Finite Element Method (GFEM) is applied for conjugate heat-transfer of a rotating cylinder immersed in Fe
3
O
4
-water nanofluid under the heat-flux and magnetic field. The outer boundaries of the cavity were maintained at low temperatures while beside the cylinder were insulated. It is assumed that the cylinder rotates in both clockwise and counter-clockwise directions. The dimensionless governing equations such as velocity, pressure, and temperature formulation were analyzed by the GFEM. The results were evaluated using the governing parameters such as nanoparticles (NPs) volume fraction, Hartmann and Rayleigh numbers, magnetic field angle and NPs shapes. As a main result, the average Nusselt number increases by increasing the NPs volume fraction, inclination angle and thermal conductivity ratios, while increasing the Hartmann number decreased the Nusselt number. Furthermore, platelet NPs had the maximum average Nusselt number and spherical NPs made the minimum values of Nusselt numbers among examined NPs shapes. |
doi_str_mv | 10.1038/s41598-021-83944-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3609b262effc45368eea9f29d59d283a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3609b262effc45368eea9f29d59d283a</doaj_id><sourcerecordid>2492787054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEotXSP8ABReLCJeD42xyQUMVHpSIuvVtee5J65djFTlbaf493U0rLAR9sa-adxx77bZrXPXrfIyI_FNozJTuE-04SRWmHnjXnGFHWYYLx80f7s-ailB2qg2FFe_WyOSOEYyEIP2_GH2aMMHvbRhPTEBbv2i3cmr1PufXRhsX5OLYmtn6aIBdwbU6zmY9Bm6Jb7Oz30NpD8NFB_tgOPvoZWggwQZxroQmH4sur5sVgQoGL-3XT3Hz9cnP5vbv--e3q8vN1ZxlFc8cpIiAUV84SCT3tsWA9OLBGcuGUkG6oE9kyIxkSjjkBmCvOVY8dp5hsmqsV65LZ6bvsJ5MPOhmvT4GUR21y7TaAJhypLeYYhsFSRrgEMGrAyjHlsCSmsj6trLtlO4GztZ1swhPo00z0t3pMey0UorWHCnh3D8jp1wJl1pMvFkIwEdJSNKaKUCZR_c9N8_Yf6S4tub7dSYWFFIjRqsKryuZUSobh4TI90kdX6NUVurpCn1yhj-g3j9t4KPnjgSogq6DUVBwh_z37P9jfrxXDhA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2492787054</pqid></control><display><type>article</type><title>Magnetic nanofluid behavior including an immersed rotating conductive cylinder: finite element analysis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Hamzah, Hameed K. ; Ali, Farooq H. ; Hatami, M. ; Jing, D. ; Jabbar, Mohammed Y.</creator><creatorcontrib>Hamzah, Hameed K. ; Ali, Farooq H. ; Hatami, M. ; Jing, D. ; Jabbar, Mohammed Y.</creatorcontrib><description>In this paper, numerical Galerkin Finite Element Method (GFEM) is applied for conjugate heat-transfer of a rotating cylinder immersed in Fe
3
O
4
-water nanofluid under the heat-flux and magnetic field. The outer boundaries of the cavity were maintained at low temperatures while beside the cylinder were insulated. It is assumed that the cylinder rotates in both clockwise and counter-clockwise directions. The dimensionless governing equations such as velocity, pressure, and temperature formulation were analyzed by the GFEM. The results were evaluated using the governing parameters such as nanoparticles (NPs) volume fraction, Hartmann and Rayleigh numbers, magnetic field angle and NPs shapes. As a main result, the average Nusselt number increases by increasing the NPs volume fraction, inclination angle and thermal conductivity ratios, while increasing the Hartmann number decreased the Nusselt number. Furthermore, platelet NPs had the maximum average Nusselt number and spherical NPs made the minimum values of Nusselt numbers among examined NPs shapes.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-83944-0</identifier><identifier>PMID: 33627736</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166/4073 ; 639/166/898 ; 639/166/988 ; Finite element method ; Humanities and Social Sciences ; Iron oxides ; Low temperature ; Magnetic fields ; Magnetism ; multidisciplinary ; Nanoparticles ; Science ; Science (multidisciplinary) ; Thermal conductivity</subject><ispartof>Scientific reports, 2021-02, Vol.11 (1), p.4463-4463, Article 4463</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423</citedby><cites>FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2492787054/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2492787054?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33627736$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamzah, Hameed K.</creatorcontrib><creatorcontrib>Ali, Farooq H.</creatorcontrib><creatorcontrib>Hatami, M.</creatorcontrib><creatorcontrib>Jing, D.</creatorcontrib><creatorcontrib>Jabbar, Mohammed Y.</creatorcontrib><title>Magnetic nanofluid behavior including an immersed rotating conductive cylinder: finite element analysis</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>In this paper, numerical Galerkin Finite Element Method (GFEM) is applied for conjugate heat-transfer of a rotating cylinder immersed in Fe
3
O
4
-water nanofluid under the heat-flux and magnetic field. The outer boundaries of the cavity were maintained at low temperatures while beside the cylinder were insulated. It is assumed that the cylinder rotates in both clockwise and counter-clockwise directions. The dimensionless governing equations such as velocity, pressure, and temperature formulation were analyzed by the GFEM. The results were evaluated using the governing parameters such as nanoparticles (NPs) volume fraction, Hartmann and Rayleigh numbers, magnetic field angle and NPs shapes. As a main result, the average Nusselt number increases by increasing the NPs volume fraction, inclination angle and thermal conductivity ratios, while increasing the Hartmann number decreased the Nusselt number. Furthermore, platelet NPs had the maximum average Nusselt number and spherical NPs made the minimum values of Nusselt numbers among examined NPs shapes.</description><subject>639/166/4073</subject><subject>639/166/898</subject><subject>639/166/988</subject><subject>Finite element method</subject><subject>Humanities and Social Sciences</subject><subject>Iron oxides</subject><subject>Low temperature</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>multidisciplinary</subject><subject>Nanoparticles</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thermal conductivity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEotXSP8ABReLCJeD42xyQUMVHpSIuvVtee5J65djFTlbaf493U0rLAR9sa-adxx77bZrXPXrfIyI_FNozJTuE-04SRWmHnjXnGFHWYYLx80f7s-ailB2qg2FFe_WyOSOEYyEIP2_GH2aMMHvbRhPTEBbv2i3cmr1PufXRhsX5OLYmtn6aIBdwbU6zmY9Bm6Jb7Oz30NpD8NFB_tgOPvoZWggwQZxroQmH4sur5sVgQoGL-3XT3Hz9cnP5vbv--e3q8vN1ZxlFc8cpIiAUV84SCT3tsWA9OLBGcuGUkG6oE9kyIxkSjjkBmCvOVY8dp5hsmqsV65LZ6bvsJ5MPOhmvT4GUR21y7TaAJhypLeYYhsFSRrgEMGrAyjHlsCSmsj6trLtlO4GztZ1swhPo00z0t3pMey0UorWHCnh3D8jp1wJl1pMvFkIwEdJSNKaKUCZR_c9N8_Yf6S4tub7dSYWFFIjRqsKryuZUSobh4TI90kdX6NUVurpCn1yhj-g3j9t4KPnjgSogq6DUVBwh_z37P9jfrxXDhA</recordid><startdate>20210224</startdate><enddate>20210224</enddate><creator>Hamzah, Hameed K.</creator><creator>Ali, Farooq H.</creator><creator>Hatami, M.</creator><creator>Jing, D.</creator><creator>Jabbar, Mohammed Y.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210224</creationdate><title>Magnetic nanofluid behavior including an immersed rotating conductive cylinder: finite element analysis</title><author>Hamzah, Hameed K. ; Ali, Farooq H. ; Hatami, M. ; Jing, D. ; Jabbar, Mohammed Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/166/4073</topic><topic>639/166/898</topic><topic>639/166/988</topic><topic>Finite element method</topic><topic>Humanities and Social Sciences</topic><topic>Iron oxides</topic><topic>Low temperature</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>multidisciplinary</topic><topic>Nanoparticles</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thermal conductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamzah, Hameed K.</creatorcontrib><creatorcontrib>Ali, Farooq H.</creatorcontrib><creatorcontrib>Hatami, M.</creatorcontrib><creatorcontrib>Jing, D.</creatorcontrib><creatorcontrib>Jabbar, Mohammed Y.</creatorcontrib><collection>SpringerOpen website</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamzah, Hameed K.</au><au>Ali, Farooq H.</au><au>Hatami, M.</au><au>Jing, D.</au><au>Jabbar, Mohammed Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic nanofluid behavior including an immersed rotating conductive cylinder: finite element analysis</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2021-02-24</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>4463</spage><epage>4463</epage><pages>4463-4463</pages><artnum>4463</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>In this paper, numerical Galerkin Finite Element Method (GFEM) is applied for conjugate heat-transfer of a rotating cylinder immersed in Fe
3
O
4
-water nanofluid under the heat-flux and magnetic field. The outer boundaries of the cavity were maintained at low temperatures while beside the cylinder were insulated. It is assumed that the cylinder rotates in both clockwise and counter-clockwise directions. The dimensionless governing equations such as velocity, pressure, and temperature formulation were analyzed by the GFEM. The results were evaluated using the governing parameters such as nanoparticles (NPs) volume fraction, Hartmann and Rayleigh numbers, magnetic field angle and NPs shapes. As a main result, the average Nusselt number increases by increasing the NPs volume fraction, inclination angle and thermal conductivity ratios, while increasing the Hartmann number decreased the Nusselt number. Furthermore, platelet NPs had the maximum average Nusselt number and spherical NPs made the minimum values of Nusselt numbers among examined NPs shapes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>33627736</pmid><doi>10.1038/s41598-021-83944-0</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2021-02, Vol.11 (1), p.4463-4463, Article 4463 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3609b262effc45368eea9f29d59d283a |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/166/4073 639/166/898 639/166/988 Finite element method Humanities and Social Sciences Iron oxides Low temperature Magnetic fields Magnetism multidisciplinary Nanoparticles Science Science (multidisciplinary) Thermal conductivity |
title | Magnetic nanofluid behavior including an immersed rotating conductive cylinder: finite element analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A44%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20nanofluid%20behavior%20including%20an%20immersed%20rotating%20conductive%20cylinder:%20finite%20element%20analysis&rft.jtitle=Scientific%20reports&rft.au=Hamzah,%20Hameed%20K.&rft.date=2021-02-24&rft.volume=11&rft.issue=1&rft.spage=4463&rft.epage=4463&rft.pages=4463-4463&rft.artnum=4463&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-83944-0&rft_dat=%3Cproquest_doaj_%3E2492787054%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-6403e7969dc38e1412751edeca867d978df9783b5a8507d5d7e26966912d6423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2492787054&rft_id=info:pmid/33627736&rfr_iscdi=true |