Loading…
Coral Reef Carbonate Chemistry Variability at Different Functional Scales
There is a growing recognition for the need to understand how seawater carbonate chemistry over coral reef environments will change in a high-CO2 world to better assess the impacts of ocean acidification on these valuable ecosystems. Coral reefs modify overlying water column chemistry through biogeo...
Saved in:
Published in: | Frontiers in Marine Science 2018-05, Vol.5 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c479t-11fd64da94ee1f61d39a99ab73f0f96edb913ecda050593ebe0d31ec4cfb4af53 |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-11fd64da94ee1f61d39a99ab73f0f96edb913ecda050593ebe0d31ec4cfb4af53 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | Frontiers in Marine Science |
container_volume | 5 |
creator | Takeshita, Yuichiro Cyronak, Tyler Martz, Todd R. Kindeberg, Theodor Andersson, Andreas J. |
description | There is a growing recognition for the need to understand how seawater carbonate chemistry over coral reef environments will change in a high-CO2 world to better assess the impacts of ocean acidification on these valuable ecosystems. Coral reefs modify overlying water column chemistry through biogeochemical processes reflected in thesuch as net community organic carbon production (NCP) and calcification (NCC). However, the relative importance and influence of these processes on seawater carbonate chemistry vary across multiple functional scales (defined here as space, time, and benthic community composition), and have not been fully constrained. Here, we use Bermuda as a case study to assess 1) spatiotemporal variability in physical and chemical parameters along a depth gradient at a rim reef location, 2) the spatial variability of total alkalinity (TA) and dissolved inorganic carbon (DIC) over distinct benthic habitats to infer NCC:NCP ratios (< several km2; rim reef vs seagrass and calcium carbonate (CaCO3) sediments) on diel timescales, and 3) compare how TA-DIC relationships and NCC:NCP vary as we expand functional scales from local habitats to the entire reef platform (10’s of km2) on seasonal to interannual timescales. Our results demonstrate that TA-DIC relationships were strongly driven by local benthic metabolism and community composition over diel cycles. However, as the spatial scale expanded to the reef platform, the TA-DIC relationship reflected processes that were integrated over larger spatiotemporal scales, with effects of NCC becoming increasingly more important over NCP. This study demonstrates the importance of considering drivers across multiple functional scales to constrain carbonate chemistry variability over coral reefs. |
doi_str_mv | 10.3389/fmars.2018.00175 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_360ce9eb82c34ce7881d07d5eb956e1d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_360ce9eb82c34ce7881d07d5eb956e1d</doaj_id><sourcerecordid>2307791516</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-11fd64da94ee1f61d39a99ab73f0f96edb913ecda050593ebe0d31ec4cfb4af53</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoKNW7xwVPHlqTTbLZHGX9KhQEv65hNpnYlG1Xk1Tov3fbiuhphpeHdxgeQs4ZnXBe6yu_hJgmJWX1hFKm5AE5KUtdjZUS8vDPfkzOUlrQgeGCSqFPyLTpI3TFE6IvGohtv4KMRTPHZUg5boo3iAHa0IW8KSAXN8F7jLjKxd16ZXMY8K54ttBhOiVHHrqEZz9zRF7vbl-ah_Hs8X7aXM_GViidx4x5VwkHWiAyXzHHNWgNreKeel2hazXjaB1QSaXm2CJ1nKEV1rcCvOQjMt33uh4W5iOG4feN6SGYXdDHdwMxB9uh4RW1qLGtS8uFRVXXzFHlJLZaVjicHpHLfdccun9VD9czs82oqCvNy_KLDezFnv2I_ecaUzaLfh2H_5MpOVVKM8mqgaJ7ysY-pYj-t5ZRs3Vldq7M1pXZueLfH6KHhg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2307791516</pqid></control><display><type>article</type><title>Coral Reef Carbonate Chemistry Variability at Different Functional Scales</title><source>ProQuest - Publicly Available Content Database</source><creator>Takeshita, Yuichiro ; Cyronak, Tyler ; Martz, Todd R. ; Kindeberg, Theodor ; Andersson, Andreas J.</creator><creatorcontrib>Takeshita, Yuichiro ; Cyronak, Tyler ; Martz, Todd R. ; Kindeberg, Theodor ; Andersson, Andreas J.</creatorcontrib><description>There is a growing recognition for the need to understand how seawater carbonate chemistry over coral reef environments will change in a high-CO2 world to better assess the impacts of ocean acidification on these valuable ecosystems. Coral reefs modify overlying water column chemistry through biogeochemical processes reflected in thesuch as net community organic carbon production (NCP) and calcification (NCC). However, the relative importance and influence of these processes on seawater carbonate chemistry vary across multiple functional scales (defined here as space, time, and benthic community composition), and have not been fully constrained. Here, we use Bermuda as a case study to assess 1) spatiotemporal variability in physical and chemical parameters along a depth gradient at a rim reef location, 2) the spatial variability of total alkalinity (TA) and dissolved inorganic carbon (DIC) over distinct benthic habitats to infer NCC:NCP ratios (< several km2; rim reef vs seagrass and calcium carbonate (CaCO3) sediments) on diel timescales, and 3) compare how TA-DIC relationships and NCC:NCP vary as we expand functional scales from local habitats to the entire reef platform (10’s of km2) on seasonal to interannual timescales. Our results demonstrate that TA-DIC relationships were strongly driven by local benthic metabolism and community composition over diel cycles. However, as the spatial scale expanded to the reef platform, the TA-DIC relationship reflected processes that were integrated over larger spatiotemporal scales, with effects of NCC becoming increasingly more important over NCP. This study demonstrates the importance of considering drivers across multiple functional scales to constrain carbonate chemistry variability over coral reefs.</description><identifier>ISSN: 2296-7745</identifier><identifier>EISSN: 2296-7745</identifier><identifier>DOI: 10.3389/fmars.2018.00175</identifier><language>eng</language><publisher>Lausanne: Frontiers Research Foundation</publisher><subject>Acidification ; Alkalinity ; beams ; Benthos ; bermuda ; Biogeochemistry ; Calcification ; Calcium ; Calcium carbonate ; Calcium carbonates ; Carbon ; Carbon dioxide ; carbonate chemistry variability ; Carbonates ; Chemistry ; Community composition ; coral reef biogeochemistry ; Coral reefs ; Dissolved inorganic carbon ; Ecosystems ; Environmental changes ; Environmental impact ; Environmental Sciences ; Marine ecosystems ; Metabolism ; NCP and NCC ; Organic carbon ; Ratios ; Sea grasses ; Seawater ; Sediments ; Spatial variations ; Variability ; Water column</subject><ispartof>Frontiers in Marine Science, 2018-05, Vol.5</ispartof><rights>2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-11fd64da94ee1f61d39a99ab73f0f96edb913ecda050593ebe0d31ec4cfb4af53</citedby><cites>FETCH-LOGICAL-c479t-11fd64da94ee1f61d39a99ab73f0f96edb913ecda050593ebe0d31ec4cfb4af53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2307791516/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2307791516?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25752,27923,27924,37011,44589,74897</link.rule.ids><backlink>$$Uhttps://hal.science/hal-04869322$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Takeshita, Yuichiro</creatorcontrib><creatorcontrib>Cyronak, Tyler</creatorcontrib><creatorcontrib>Martz, Todd R.</creatorcontrib><creatorcontrib>Kindeberg, Theodor</creatorcontrib><creatorcontrib>Andersson, Andreas J.</creatorcontrib><title>Coral Reef Carbonate Chemistry Variability at Different Functional Scales</title><title>Frontiers in Marine Science</title><description>There is a growing recognition for the need to understand how seawater carbonate chemistry over coral reef environments will change in a high-CO2 world to better assess the impacts of ocean acidification on these valuable ecosystems. Coral reefs modify overlying water column chemistry through biogeochemical processes reflected in thesuch as net community organic carbon production (NCP) and calcification (NCC). However, the relative importance and influence of these processes on seawater carbonate chemistry vary across multiple functional scales (defined here as space, time, and benthic community composition), and have not been fully constrained. Here, we use Bermuda as a case study to assess 1) spatiotemporal variability in physical and chemical parameters along a depth gradient at a rim reef location, 2) the spatial variability of total alkalinity (TA) and dissolved inorganic carbon (DIC) over distinct benthic habitats to infer NCC:NCP ratios (< several km2; rim reef vs seagrass and calcium carbonate (CaCO3) sediments) on diel timescales, and 3) compare how TA-DIC relationships and NCC:NCP vary as we expand functional scales from local habitats to the entire reef platform (10’s of km2) on seasonal to interannual timescales. Our results demonstrate that TA-DIC relationships were strongly driven by local benthic metabolism and community composition over diel cycles. However, as the spatial scale expanded to the reef platform, the TA-DIC relationship reflected processes that were integrated over larger spatiotemporal scales, with effects of NCC becoming increasingly more important over NCP. This study demonstrates the importance of considering drivers across multiple functional scales to constrain carbonate chemistry variability over coral reefs.</description><subject>Acidification</subject><subject>Alkalinity</subject><subject>beams</subject><subject>Benthos</subject><subject>bermuda</subject><subject>Biogeochemistry</subject><subject>Calcification</subject><subject>Calcium</subject><subject>Calcium carbonate</subject><subject>Calcium carbonates</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>carbonate chemistry variability</subject><subject>Carbonates</subject><subject>Chemistry</subject><subject>Community composition</subject><subject>coral reef biogeochemistry</subject><subject>Coral reefs</subject><subject>Dissolved inorganic carbon</subject><subject>Ecosystems</subject><subject>Environmental changes</subject><subject>Environmental impact</subject><subject>Environmental Sciences</subject><subject>Marine ecosystems</subject><subject>Metabolism</subject><subject>NCP and NCC</subject><subject>Organic carbon</subject><subject>Ratios</subject><subject>Sea grasses</subject><subject>Seawater</subject><subject>Sediments</subject><subject>Spatial variations</subject><subject>Variability</subject><subject>Water column</subject><issn>2296-7745</issn><issn>2296-7745</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1LAzEQhoMoKNW7xwVPHlqTTbLZHGX9KhQEv65hNpnYlG1Xk1Tov3fbiuhphpeHdxgeQs4ZnXBe6yu_hJgmJWX1hFKm5AE5KUtdjZUS8vDPfkzOUlrQgeGCSqFPyLTpI3TFE6IvGohtv4KMRTPHZUg5boo3iAHa0IW8KSAXN8F7jLjKxd16ZXMY8K54ttBhOiVHHrqEZz9zRF7vbl-ah_Hs8X7aXM_GViidx4x5VwkHWiAyXzHHNWgNreKeel2hazXjaB1QSaXm2CJ1nKEV1rcCvOQjMt33uh4W5iOG4feN6SGYXdDHdwMxB9uh4RW1qLGtS8uFRVXXzFHlJLZaVjicHpHLfdccun9VD9czs82oqCvNy_KLDezFnv2I_ecaUzaLfh2H_5MpOVVKM8mqgaJ7ysY-pYj-t5ZRs3Vldq7M1pXZueLfH6KHhg</recordid><startdate>20180522</startdate><enddate>20180522</enddate><creator>Takeshita, Yuichiro</creator><creator>Cyronak, Tyler</creator><creator>Martz, Todd R.</creator><creator>Kindeberg, Theodor</creator><creator>Andersson, Andreas J.</creator><general>Frontiers Research Foundation</general><general>Frontiers Media</general><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2P</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>1XC</scope><scope>DOA</scope></search><sort><creationdate>20180522</creationdate><title>Coral Reef Carbonate Chemistry Variability at Different Functional Scales</title><author>Takeshita, Yuichiro ; Cyronak, Tyler ; Martz, Todd R. ; Kindeberg, Theodor ; Andersson, Andreas J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-11fd64da94ee1f61d39a99ab73f0f96edb913ecda050593ebe0d31ec4cfb4af53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acidification</topic><topic>Alkalinity</topic><topic>beams</topic><topic>Benthos</topic><topic>bermuda</topic><topic>Biogeochemistry</topic><topic>Calcification</topic><topic>Calcium</topic><topic>Calcium carbonate</topic><topic>Calcium carbonates</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>carbonate chemistry variability</topic><topic>Carbonates</topic><topic>Chemistry</topic><topic>Community composition</topic><topic>coral reef biogeochemistry</topic><topic>Coral reefs</topic><topic>Dissolved inorganic carbon</topic><topic>Ecosystems</topic><topic>Environmental changes</topic><topic>Environmental impact</topic><topic>Environmental Sciences</topic><topic>Marine ecosystems</topic><topic>Metabolism</topic><topic>NCP and NCC</topic><topic>Organic carbon</topic><topic>Ratios</topic><topic>Sea grasses</topic><topic>Seawater</topic><topic>Sediments</topic><topic>Spatial variations</topic><topic>Variability</topic><topic>Water column</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Takeshita, Yuichiro</creatorcontrib><creatorcontrib>Cyronak, Tyler</creatorcontrib><creatorcontrib>Martz, Todd R.</creatorcontrib><creatorcontrib>Kindeberg, Theodor</creatorcontrib><creatorcontrib>Andersson, Andreas J.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in Marine Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Takeshita, Yuichiro</au><au>Cyronak, Tyler</au><au>Martz, Todd R.</au><au>Kindeberg, Theodor</au><au>Andersson, Andreas J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coral Reef Carbonate Chemistry Variability at Different Functional Scales</atitle><jtitle>Frontiers in Marine Science</jtitle><date>2018-05-22</date><risdate>2018</risdate><volume>5</volume><issn>2296-7745</issn><eissn>2296-7745</eissn><abstract>There is a growing recognition for the need to understand how seawater carbonate chemistry over coral reef environments will change in a high-CO2 world to better assess the impacts of ocean acidification on these valuable ecosystems. Coral reefs modify overlying water column chemistry through biogeochemical processes reflected in thesuch as net community organic carbon production (NCP) and calcification (NCC). However, the relative importance and influence of these processes on seawater carbonate chemistry vary across multiple functional scales (defined here as space, time, and benthic community composition), and have not been fully constrained. Here, we use Bermuda as a case study to assess 1) spatiotemporal variability in physical and chemical parameters along a depth gradient at a rim reef location, 2) the spatial variability of total alkalinity (TA) and dissolved inorganic carbon (DIC) over distinct benthic habitats to infer NCC:NCP ratios (< several km2; rim reef vs seagrass and calcium carbonate (CaCO3) sediments) on diel timescales, and 3) compare how TA-DIC relationships and NCC:NCP vary as we expand functional scales from local habitats to the entire reef platform (10’s of km2) on seasonal to interannual timescales. Our results demonstrate that TA-DIC relationships were strongly driven by local benthic metabolism and community composition over diel cycles. However, as the spatial scale expanded to the reef platform, the TA-DIC relationship reflected processes that were integrated over larger spatiotemporal scales, with effects of NCC becoming increasingly more important over NCP. This study demonstrates the importance of considering drivers across multiple functional scales to constrain carbonate chemistry variability over coral reefs.</abstract><cop>Lausanne</cop><pub>Frontiers Research Foundation</pub><doi>10.3389/fmars.2018.00175</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2296-7745 |
ispartof | Frontiers in Marine Science, 2018-05, Vol.5 |
issn | 2296-7745 2296-7745 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_360ce9eb82c34ce7881d07d5eb956e1d |
source | ProQuest - Publicly Available Content Database |
subjects | Acidification Alkalinity beams Benthos bermuda Biogeochemistry Calcification Calcium Calcium carbonate Calcium carbonates Carbon Carbon dioxide carbonate chemistry variability Carbonates Chemistry Community composition coral reef biogeochemistry Coral reefs Dissolved inorganic carbon Ecosystems Environmental changes Environmental impact Environmental Sciences Marine ecosystems Metabolism NCP and NCC Organic carbon Ratios Sea grasses Seawater Sediments Spatial variations Variability Water column |
title | Coral Reef Carbonate Chemistry Variability at Different Functional Scales |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A03%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coral%20Reef%20Carbonate%20Chemistry%20Variability%20at%20Different%20Functional%20Scales&rft.jtitle=Frontiers%20in%20Marine%20Science&rft.au=Takeshita,%20Yuichiro&rft.date=2018-05-22&rft.volume=5&rft.issn=2296-7745&rft.eissn=2296-7745&rft_id=info:doi/10.3389/fmars.2018.00175&rft_dat=%3Cproquest_doaj_%3E2307791516%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-11fd64da94ee1f61d39a99ab73f0f96edb913ecda050593ebe0d31ec4cfb4af53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2307791516&rft_id=info:pmid/&rfr_iscdi=true |