Loading…

Computation of daily Penman–Monteith reference evapotranspiration in the Carpathian Region and comparison with Thornthwaite estimates

The Pannonian Basin Experiment (PannEx) is a Regional Hydroclimate Project (RHP) of the World Climate Research Programme (WCRP) Global Energy and Water Exchanges (GEWEX) Project. A gridded meteorological dataset is available for the PannEx region as part of the CarpatClim database, which consists of...

Full description

Saved in:
Bibliographic Details
Published in:Advances in science and research 2020-02, Vol.16, p.251-259
Main Authors: Lakatos, Mónika, Weidinger, Tamás, Hoffmann, Lilla, Bihari, Zita, Horváth, Ákos
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Pannonian Basin Experiment (PannEx) is a Regional Hydroclimate Project (RHP) of the World Climate Research Programme (WCRP) Global Energy and Water Exchanges (GEWEX) Project. A gridded meteorological dataset is available for the PannEx region as part of the CarpatClim database, which consists of homogenized and harmonized daily meteorological observations for several climate parameters with 0.1∘ spatial resolution in the period of 1961–2010. The estimation of the Penman–Monteith reference evapotranspiration (ET0) on the daily scale was performed for the CarpatClim grid as one of the first results in the PannEx initiative. This study compares the already accessible Thornthwaite estimates of potential evapotranspiration (PET_Th) on the monthly scale to the newly derived Penman–Monteith estimates. The comparison is made on an annual and seasonal basis for the 50-year period. The distribution of both estimates is influenced by geographical location and orographic features. The annual time series are similar but the regional-average annual values of ET0 are ∼80 mm greater than the Thornthwaite estimate in the whole CarpatClim region. The relative bias and root mean square error was computed as well. The classical Thornthwaite method underestimates the ET0 by more than 20 % over extensive regions for selected grid points at elevations lower than 200 m in the Pannonian Basin. The slope of the fitted linear trend indicate increasing reference evapotranspiration in the Pannonian/Carpathian Basin due to climate change.
ISSN:1992-0636
1992-0628
1992-0636
DOI:10.5194/asr-16-251-2020