Loading…

Simulations for Planning of Liquid Hydrogen Spill Test

In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimenta...

Full description

Saved in:
Bibliographic Details
Published in:Energies (Basel) 2023-02, Vol.16 (4), p.1580
Main Authors: Mangala Gitushi, Kevin, Blaylock, Myra, Hecht, Ethan S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c386t-ae1e8d449870b9547e6860380b827918a7eb397058f8f0d7ba5d436a9016977b3
container_end_page
container_issue 4
container_start_page 1580
container_title Energies (Basel)
container_volume 16
creator Mangala Gitushi, Kevin
Blaylock, Myra
Hecht, Ethan S.
description In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimental conditions, including sensor placement and cross wind velocity. This paper describes the modeling used in this planning process and its main conclusions. Sierra Suite’s Fuego, an in-house computational fluid dynamics code, was used to simulate a RANS model of a liquid hydrogen spill with five crosswind velocities: 0.45, 0.89, 1.34, 1.79, and 2.24 m/s. Two pool sizes were considered: a diameter of 0.85 m and a diameter of 1.7. A grid resolution study was completed on the smaller pool size with a 1.34 m/s crosswind. A comparison of the length and height of the plume of flammable hydrogen vaporizing from the pool shows that the plume becomes longer and remains closer to the ground with increasing wind speed. The plume reaches the top of the facility only in the 0.45 m/s case. From these results, we concluded that it will be best for the spacing and location of the concentration sensors to be reconfigured for each wind speed during the experiment.
doi_str_mv 10.3390/en16041580
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_361196cdf2754b4b9be9433fb0717056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743141465</galeid><doaj_id>oai_doaj_org_article_361196cdf2754b4b9be9433fb0717056</doaj_id><sourcerecordid>A743141465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-ae1e8d449870b9547e6860380b827918a7eb397058f8f0d7ba5d436a9016977b3</originalsourceid><addsrcrecordid>eNpNkU1rGzEQhpfQQkLiS37Bkt4KdjU7Wn0cTWiTgCGFJGchaSVHZi3Z0vqQf18lW9LOHGYY3nmGl2maayArREl-uAiMUOgFOWsuQEq2BMLxy3_9ebMoZUdqIAIiXjTsKexPo55CiqX1Kbe_Rx1jiNs2-XYTjqcwtPdvQ05bF9unQxjH9tmV6ar56vVY3OJvvWxefv18vr1fbh7vHm7Xm6VFwaalduDEQKkUnBjZU-6YYAQFMaLjEoTmzqDkpBdeeDJwo_uBItOSAJOcG7xsHmbukPROHXLY6_ymkg7qY5DyVuk8BTs6hQxAMjv4jvfUUCONkxTRG8KhXmCVdTOzUpmCKjZMzr7aFKOzk-oQgENfRd9m0SGn46k6Vbt0yrF6VB3n1QJF0VXValZtdb0cok9T1rbm4PahIp0Pdb7mFIECZe_Y7_OCzamU7PynFyDq_Xnq3_PwD2Ydhw8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779544382</pqid></control><display><type>article</type><title>Simulations for Planning of Liquid Hydrogen Spill Test</title><source>Publicly Available Content Database</source><creator>Mangala Gitushi, Kevin ; Blaylock, Myra ; Hecht, Ethan S.</creator><creatorcontrib>Mangala Gitushi, Kevin ; Blaylock, Myra ; Hecht, Ethan S. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimental conditions, including sensor placement and cross wind velocity. This paper describes the modeling used in this planning process and its main conclusions. Sierra Suite’s Fuego, an in-house computational fluid dynamics code, was used to simulate a RANS model of a liquid hydrogen spill with five crosswind velocities: 0.45, 0.89, 1.34, 1.79, and 2.24 m/s. Two pool sizes were considered: a diameter of 0.85 m and a diameter of 1.7. A grid resolution study was completed on the smaller pool size with a 1.34 m/s crosswind. A comparison of the length and height of the plume of flammable hydrogen vaporizing from the pool shows that the plume becomes longer and remains closer to the ground with increasing wind speed. The plume reaches the top of the facility only in the 0.45 m/s case. From these results, we concluded that it will be best for the spacing and location of the concentration sensors to be reconfigured for each wind speed during the experiment.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en16041580</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>08 HYDROGEN ; CFD ; Computational fluid dynamics ; Computer applications ; concentrations ; crosswind ; Crosswinds ; Equipment and supplies ; Experiments ; Flammability ; Fluid dynamics ; Humidity ; Hydrodynamics ; Hydrogen ; Laboratories ; Laboratory equipment ; Laboratory tests ; Liquid hydrogen ; Natural gas ; Phase transitions ; Sensors ; Simulation ; Simulation methods ; Vaporization ; Velocity ; Wind ; Wind speed</subject><ispartof>Energies (Basel), 2023-02, Vol.16 (4), p.1580</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c386t-ae1e8d449870b9547e6860380b827918a7eb397058f8f0d7ba5d436a9016977b3</cites><orcidid>0000-0001-8380-9072 ; 0000000183809072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779544382/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779544382?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25751,27922,27923,37010,44588,74896</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2311715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mangala Gitushi, Kevin</creatorcontrib><creatorcontrib>Blaylock, Myra</creatorcontrib><creatorcontrib>Hecht, Ethan S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Simulations for Planning of Liquid Hydrogen Spill Test</title><title>Energies (Basel)</title><description>In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimental conditions, including sensor placement and cross wind velocity. This paper describes the modeling used in this planning process and its main conclusions. Sierra Suite’s Fuego, an in-house computational fluid dynamics code, was used to simulate a RANS model of a liquid hydrogen spill with five crosswind velocities: 0.45, 0.89, 1.34, 1.79, and 2.24 m/s. Two pool sizes were considered: a diameter of 0.85 m and a diameter of 1.7. A grid resolution study was completed on the smaller pool size with a 1.34 m/s crosswind. A comparison of the length and height of the plume of flammable hydrogen vaporizing from the pool shows that the plume becomes longer and remains closer to the ground with increasing wind speed. The plume reaches the top of the facility only in the 0.45 m/s case. From these results, we concluded that it will be best for the spacing and location of the concentration sensors to be reconfigured for each wind speed during the experiment.</description><subject>08 HYDROGEN</subject><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>concentrations</subject><subject>crosswind</subject><subject>Crosswinds</subject><subject>Equipment and supplies</subject><subject>Experiments</subject><subject>Flammability</subject><subject>Fluid dynamics</subject><subject>Humidity</subject><subject>Hydrodynamics</subject><subject>Hydrogen</subject><subject>Laboratories</subject><subject>Laboratory equipment</subject><subject>Laboratory tests</subject><subject>Liquid hydrogen</subject><subject>Natural gas</subject><subject>Phase transitions</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Vaporization</subject><subject>Velocity</subject><subject>Wind</subject><subject>Wind speed</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1rGzEQhpfQQkLiS37Bkt4KdjU7Wn0cTWiTgCGFJGchaSVHZi3Z0vqQf18lW9LOHGYY3nmGl2maayArREl-uAiMUOgFOWsuQEq2BMLxy3_9ebMoZUdqIAIiXjTsKexPo55CiqX1Kbe_Rx1jiNs2-XYTjqcwtPdvQ05bF9unQxjH9tmV6ar56vVY3OJvvWxefv18vr1fbh7vHm7Xm6VFwaalduDEQKkUnBjZU-6YYAQFMaLjEoTmzqDkpBdeeDJwo_uBItOSAJOcG7xsHmbukPROHXLY6_ymkg7qY5DyVuk8BTs6hQxAMjv4jvfUUCONkxTRG8KhXmCVdTOzUpmCKjZMzr7aFKOzk-oQgENfRd9m0SGn46k6Vbt0yrF6VB3n1QJF0VXValZtdb0cok9T1rbm4PahIp0Pdb7mFIECZe_Y7_OCzamU7PynFyDq_Xnq3_PwD2Ydhw8</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Mangala Gitushi, Kevin</creator><creator>Blaylock, Myra</creator><creator>Hecht, Ethan S.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8380-9072</orcidid><orcidid>https://orcid.org/0000000183809072</orcidid></search><sort><creationdate>20230201</creationdate><title>Simulations for Planning of Liquid Hydrogen Spill Test</title><author>Mangala Gitushi, Kevin ; Blaylock, Myra ; Hecht, Ethan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-ae1e8d449870b9547e6860380b827918a7eb397058f8f0d7ba5d436a9016977b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>08 HYDROGEN</topic><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>concentrations</topic><topic>crosswind</topic><topic>Crosswinds</topic><topic>Equipment and supplies</topic><topic>Experiments</topic><topic>Flammability</topic><topic>Fluid dynamics</topic><topic>Humidity</topic><topic>Hydrodynamics</topic><topic>Hydrogen</topic><topic>Laboratories</topic><topic>Laboratory equipment</topic><topic>Laboratory tests</topic><topic>Liquid hydrogen</topic><topic>Natural gas</topic><topic>Phase transitions</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Vaporization</topic><topic>Velocity</topic><topic>Wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangala Gitushi, Kevin</creatorcontrib><creatorcontrib>Blaylock, Myra</creatorcontrib><creatorcontrib>Hecht, Ethan S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangala Gitushi, Kevin</au><au>Blaylock, Myra</au><au>Hecht, Ethan S.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulations for Planning of Liquid Hydrogen Spill Test</atitle><jtitle>Energies (Basel)</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>1580</spage><pages>1580-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimental conditions, including sensor placement and cross wind velocity. This paper describes the modeling used in this planning process and its main conclusions. Sierra Suite’s Fuego, an in-house computational fluid dynamics code, was used to simulate a RANS model of a liquid hydrogen spill with five crosswind velocities: 0.45, 0.89, 1.34, 1.79, and 2.24 m/s. Two pool sizes were considered: a diameter of 0.85 m and a diameter of 1.7. A grid resolution study was completed on the smaller pool size with a 1.34 m/s crosswind. A comparison of the length and height of the plume of flammable hydrogen vaporizing from the pool shows that the plume becomes longer and remains closer to the ground with increasing wind speed. The plume reaches the top of the facility only in the 0.45 m/s case. From these results, we concluded that it will be best for the spacing and location of the concentration sensors to be reconfigured for each wind speed during the experiment.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en16041580</doi><orcidid>https://orcid.org/0000-0001-8380-9072</orcidid><orcidid>https://orcid.org/0000000183809072</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1073
ispartof Energies (Basel), 2023-02, Vol.16 (4), p.1580
issn 1996-1073
1996-1073
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_361196cdf2754b4b9be9433fb0717056
source Publicly Available Content Database
subjects 08 HYDROGEN
CFD
Computational fluid dynamics
Computer applications
concentrations
crosswind
Crosswinds
Equipment and supplies
Experiments
Flammability
Fluid dynamics
Humidity
Hydrodynamics
Hydrogen
Laboratories
Laboratory equipment
Laboratory tests
Liquid hydrogen
Natural gas
Phase transitions
Sensors
Simulation
Simulation methods
Vaporization
Velocity
Wind
Wind speed
title Simulations for Planning of Liquid Hydrogen Spill Test
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulations%20for%20Planning%20of%20Liquid%20Hydrogen%20Spill%20Test&rft.jtitle=Energies%20(Basel)&rft.au=Mangala%20Gitushi,%20Kevin&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2023-02-01&rft.volume=16&rft.issue=4&rft.spage=1580&rft.pages=1580-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en16041580&rft_dat=%3Cgale_doaj_%3EA743141465%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-ae1e8d449870b9547e6860380b827918a7eb397058f8f0d7ba5d436a9016977b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779544382&rft_id=info:pmid/&rft_galeid=A743141465&rfr_iscdi=true