Loading…
Simulations for Planning of Liquid Hydrogen Spill Test
In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimenta...
Saved in:
Published in: | Energies (Basel) 2023-02, Vol.16 (4), p.1580 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c386t-ae1e8d449870b9547e6860380b827918a7eb397058f8f0d7ba5d436a9016977b3 |
container_end_page | |
container_issue | 4 |
container_start_page | 1580 |
container_title | Energies (Basel) |
container_volume | 16 |
creator | Mangala Gitushi, Kevin Blaylock, Myra Hecht, Ethan S. |
description | In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimental conditions, including sensor placement and cross wind velocity. This paper describes the modeling used in this planning process and its main conclusions. Sierra Suite’s Fuego, an in-house computational fluid dynamics code, was used to simulate a RANS model of a liquid hydrogen spill with five crosswind velocities: 0.45, 0.89, 1.34, 1.79, and 2.24 m/s. Two pool sizes were considered: a diameter of 0.85 m and a diameter of 1.7. A grid resolution study was completed on the smaller pool size with a 1.34 m/s crosswind. A comparison of the length and height of the plume of flammable hydrogen vaporizing from the pool shows that the plume becomes longer and remains closer to the ground with increasing wind speed. The plume reaches the top of the facility only in the 0.45 m/s case. From these results, we concluded that it will be best for the spacing and location of the concentration sensors to be reconfigured for each wind speed during the experiment. |
doi_str_mv | 10.3390/en16041580 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_361196cdf2754b4b9be9433fb0717056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A743141465</galeid><doaj_id>oai_doaj_org_article_361196cdf2754b4b9be9433fb0717056</doaj_id><sourcerecordid>A743141465</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-ae1e8d449870b9547e6860380b827918a7eb397058f8f0d7ba5d436a9016977b3</originalsourceid><addsrcrecordid>eNpNkU1rGzEQhpfQQkLiS37Bkt4KdjU7Wn0cTWiTgCGFJGchaSVHZi3Z0vqQf18lW9LOHGYY3nmGl2maayArREl-uAiMUOgFOWsuQEq2BMLxy3_9ebMoZUdqIAIiXjTsKexPo55CiqX1Kbe_Rx1jiNs2-XYTjqcwtPdvQ05bF9unQxjH9tmV6ar56vVY3OJvvWxefv18vr1fbh7vHm7Xm6VFwaalduDEQKkUnBjZU-6YYAQFMaLjEoTmzqDkpBdeeDJwo_uBItOSAJOcG7xsHmbukPROHXLY6_ymkg7qY5DyVuk8BTs6hQxAMjv4jvfUUCONkxTRG8KhXmCVdTOzUpmCKjZMzr7aFKOzk-oQgENfRd9m0SGn46k6Vbt0yrF6VB3n1QJF0VXValZtdb0cok9T1rbm4PahIp0Pdb7mFIECZe_Y7_OCzamU7PynFyDq_Xnq3_PwD2Ydhw8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2779544382</pqid></control><display><type>article</type><title>Simulations for Planning of Liquid Hydrogen Spill Test</title><source>Publicly Available Content Database</source><creator>Mangala Gitushi, Kevin ; Blaylock, Myra ; Hecht, Ethan S.</creator><creatorcontrib>Mangala Gitushi, Kevin ; Blaylock, Myra ; Hecht, Ethan S. ; Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><description>In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimental conditions, including sensor placement and cross wind velocity. This paper describes the modeling used in this planning process and its main conclusions. Sierra Suite’s Fuego, an in-house computational fluid dynamics code, was used to simulate a RANS model of a liquid hydrogen spill with five crosswind velocities: 0.45, 0.89, 1.34, 1.79, and 2.24 m/s. Two pool sizes were considered: a diameter of 0.85 m and a diameter of 1.7. A grid resolution study was completed on the smaller pool size with a 1.34 m/s crosswind. A comparison of the length and height of the plume of flammable hydrogen vaporizing from the pool shows that the plume becomes longer and remains closer to the ground with increasing wind speed. The plume reaches the top of the facility only in the 0.45 m/s case. From these results, we concluded that it will be best for the spacing and location of the concentration sensors to be reconfigured for each wind speed during the experiment.</description><identifier>ISSN: 1996-1073</identifier><identifier>EISSN: 1996-1073</identifier><identifier>DOI: 10.3390/en16041580</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>08 HYDROGEN ; CFD ; Computational fluid dynamics ; Computer applications ; concentrations ; crosswind ; Crosswinds ; Equipment and supplies ; Experiments ; Flammability ; Fluid dynamics ; Humidity ; Hydrodynamics ; Hydrogen ; Laboratories ; Laboratory equipment ; Laboratory tests ; Liquid hydrogen ; Natural gas ; Phase transitions ; Sensors ; Simulation ; Simulation methods ; Vaporization ; Velocity ; Wind ; Wind speed</subject><ispartof>Energies (Basel), 2023-02, Vol.16 (4), p.1580</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c386t-ae1e8d449870b9547e6860380b827918a7eb397058f8f0d7ba5d436a9016977b3</cites><orcidid>0000-0001-8380-9072 ; 0000000183809072</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2779544382/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2779544382?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25751,27922,27923,37010,44588,74896</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/2311715$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Mangala Gitushi, Kevin</creatorcontrib><creatorcontrib>Blaylock, Myra</creatorcontrib><creatorcontrib>Hecht, Ethan S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><title>Simulations for Planning of Liquid Hydrogen Spill Test</title><title>Energies (Basel)</title><description>In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimental conditions, including sensor placement and cross wind velocity. This paper describes the modeling used in this planning process and its main conclusions. Sierra Suite’s Fuego, an in-house computational fluid dynamics code, was used to simulate a RANS model of a liquid hydrogen spill with five crosswind velocities: 0.45, 0.89, 1.34, 1.79, and 2.24 m/s. Two pool sizes were considered: a diameter of 0.85 m and a diameter of 1.7. A grid resolution study was completed on the smaller pool size with a 1.34 m/s crosswind. A comparison of the length and height of the plume of flammable hydrogen vaporizing from the pool shows that the plume becomes longer and remains closer to the ground with increasing wind speed. The plume reaches the top of the facility only in the 0.45 m/s case. From these results, we concluded that it will be best for the spacing and location of the concentration sensors to be reconfigured for each wind speed during the experiment.</description><subject>08 HYDROGEN</subject><subject>CFD</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>concentrations</subject><subject>crosswind</subject><subject>Crosswinds</subject><subject>Equipment and supplies</subject><subject>Experiments</subject><subject>Flammability</subject><subject>Fluid dynamics</subject><subject>Humidity</subject><subject>Hydrodynamics</subject><subject>Hydrogen</subject><subject>Laboratories</subject><subject>Laboratory equipment</subject><subject>Laboratory tests</subject><subject>Liquid hydrogen</subject><subject>Natural gas</subject><subject>Phase transitions</subject><subject>Sensors</subject><subject>Simulation</subject><subject>Simulation methods</subject><subject>Vaporization</subject><subject>Velocity</subject><subject>Wind</subject><subject>Wind speed</subject><issn>1996-1073</issn><issn>1996-1073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkU1rGzEQhpfQQkLiS37Bkt4KdjU7Wn0cTWiTgCGFJGchaSVHZi3Z0vqQf18lW9LOHGYY3nmGl2maayArREl-uAiMUOgFOWsuQEq2BMLxy3_9ebMoZUdqIAIiXjTsKexPo55CiqX1Kbe_Rx1jiNs2-XYTjqcwtPdvQ05bF9unQxjH9tmV6ar56vVY3OJvvWxefv18vr1fbh7vHm7Xm6VFwaalduDEQKkUnBjZU-6YYAQFMaLjEoTmzqDkpBdeeDJwo_uBItOSAJOcG7xsHmbukPROHXLY6_ymkg7qY5DyVuk8BTs6hQxAMjv4jvfUUCONkxTRG8KhXmCVdTOzUpmCKjZMzr7aFKOzk-oQgENfRd9m0SGn46k6Vbt0yrF6VB3n1QJF0VXValZtdb0cok9T1rbm4PahIp0Pdb7mFIECZe_Y7_OCzamU7PynFyDq_Xnq3_PwD2Ydhw8</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Mangala Gitushi, Kevin</creator><creator>Blaylock, Myra</creator><creator>Hecht, Ethan S.</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8380-9072</orcidid><orcidid>https://orcid.org/0000000183809072</orcidid></search><sort><creationdate>20230201</creationdate><title>Simulations for Planning of Liquid Hydrogen Spill Test</title><author>Mangala Gitushi, Kevin ; Blaylock, Myra ; Hecht, Ethan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-ae1e8d449870b9547e6860380b827918a7eb397058f8f0d7ba5d436a9016977b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>08 HYDROGEN</topic><topic>CFD</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>concentrations</topic><topic>crosswind</topic><topic>Crosswinds</topic><topic>Equipment and supplies</topic><topic>Experiments</topic><topic>Flammability</topic><topic>Fluid dynamics</topic><topic>Humidity</topic><topic>Hydrodynamics</topic><topic>Hydrogen</topic><topic>Laboratories</topic><topic>Laboratory equipment</topic><topic>Laboratory tests</topic><topic>Liquid hydrogen</topic><topic>Natural gas</topic><topic>Phase transitions</topic><topic>Sensors</topic><topic>Simulation</topic><topic>Simulation methods</topic><topic>Vaporization</topic><topic>Velocity</topic><topic>Wind</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mangala Gitushi, Kevin</creatorcontrib><creatorcontrib>Blaylock, Myra</creatorcontrib><creatorcontrib>Hecht, Ethan S.</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energies (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mangala Gitushi, Kevin</au><au>Blaylock, Myra</au><au>Hecht, Ethan S.</au><aucorp>Sandia National Lab. (SNL-CA), Livermore, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulations for Planning of Liquid Hydrogen Spill Test</atitle><jtitle>Energies (Basel)</jtitle><date>2023-02-01</date><risdate>2023</risdate><volume>16</volume><issue>4</issue><spage>1580</spage><pages>1580-</pages><issn>1996-1073</issn><eissn>1996-1073</eissn><abstract>In order to better understand the complex pooling and vaporization of a liquid hydrogen spill, Sandia National Laboratories is conducting a highly instrumented, controlled experiment inside their Shock Tube Facility. Simulations were run before the experiment to help with the planning of experimental conditions, including sensor placement and cross wind velocity. This paper describes the modeling used in this planning process and its main conclusions. Sierra Suite’s Fuego, an in-house computational fluid dynamics code, was used to simulate a RANS model of a liquid hydrogen spill with five crosswind velocities: 0.45, 0.89, 1.34, 1.79, and 2.24 m/s. Two pool sizes were considered: a diameter of 0.85 m and a diameter of 1.7. A grid resolution study was completed on the smaller pool size with a 1.34 m/s crosswind. A comparison of the length and height of the plume of flammable hydrogen vaporizing from the pool shows that the plume becomes longer and remains closer to the ground with increasing wind speed. The plume reaches the top of the facility only in the 0.45 m/s case. From these results, we concluded that it will be best for the spacing and location of the concentration sensors to be reconfigured for each wind speed during the experiment.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/en16041580</doi><orcidid>https://orcid.org/0000-0001-8380-9072</orcidid><orcidid>https://orcid.org/0000000183809072</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1073 |
ispartof | Energies (Basel), 2023-02, Vol.16 (4), p.1580 |
issn | 1996-1073 1996-1073 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_361196cdf2754b4b9be9433fb0717056 |
source | Publicly Available Content Database |
subjects | 08 HYDROGEN CFD Computational fluid dynamics Computer applications concentrations crosswind Crosswinds Equipment and supplies Experiments Flammability Fluid dynamics Humidity Hydrodynamics Hydrogen Laboratories Laboratory equipment Laboratory tests Liquid hydrogen Natural gas Phase transitions Sensors Simulation Simulation methods Vaporization Velocity Wind Wind speed |
title | Simulations for Planning of Liquid Hydrogen Spill Test |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A31%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulations%20for%20Planning%20of%20Liquid%20Hydrogen%20Spill%20Test&rft.jtitle=Energies%20(Basel)&rft.au=Mangala%20Gitushi,%20Kevin&rft.aucorp=Sandia%20National%20Lab.%20(SNL-CA),%20Livermore,%20CA%20(United%20States)&rft.date=2023-02-01&rft.volume=16&rft.issue=4&rft.spage=1580&rft.pages=1580-&rft.issn=1996-1073&rft.eissn=1996-1073&rft_id=info:doi/10.3390/en16041580&rft_dat=%3Cgale_doaj_%3EA743141465%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c386t-ae1e8d449870b9547e6860380b827918a7eb397058f8f0d7ba5d436a9016977b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2779544382&rft_id=info:pmid/&rft_galeid=A743141465&rfr_iscdi=true |