Loading…
Patient, physician, and policy factors underlying variation in use of telemedicine for radiation oncology cancer care
Background Oncology telemedicine was implemented rapidly after COVID‐19. We examined multilevel correlates and outcomes of telemedicine use for patients undergoing radiotherapy (RT) for cancer. Methods Upon implementation of a telemedicine platform at a comprehensive cancer center, we analyzed 468 c...
Saved in:
Published in: | Cancer medicine (Malden, MA) MA), 2022-05, Vol.11 (10), p.2096-2105 |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5765-7f97ea53f0fb6f81536d59e62cbe74b50d97ebff80f0db45ce3c4dee95c8a6dc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c5765-7f97ea53f0fb6f81536d59e62cbe74b50d97ebff80f0db45ce3c4dee95c8a6dc3 |
container_end_page | 2105 |
container_issue | 10 |
container_start_page | 2096 |
container_title | Cancer medicine (Malden, MA) |
container_volume | 11 |
creator | De, Brian Fu, Shuangshuang Chen, Ying‐Shiuan Das, Prajnan Ku, Kimberly Maroongroge, Sean Woodhouse, Kristina D. Hoffman, Karen E. Nguyen, Quynh‐Nhu Reed, Valerie K. Chen, Aileen B. Koong, Albert C. Smith, Benjamin D. Smith, Grace L. |
description | Background
Oncology telemedicine was implemented rapidly after COVID‐19. We examined multilevel correlates and outcomes of telemedicine use for patients undergoing radiotherapy (RT) for cancer.
Methods
Upon implementation of a telemedicine platform at a comprehensive cancer center, we analyzed 468 consecutive patient RT courses from March 16, 2020 to June 1, 2020. Patients were categorized as using telemedicine during ≥1 weekly oncologist visits versus in‐person oncologist management only. Temporal trends were evaluated with Cochran‐Armitage tests; chi‐squared test and multilevel multivariable logistic models identified correlates of use and outcomes.
Results
Overall, 33% used telemedicine versus 67% in‐person only oncologist management. Temporal trends (ptrend |
doi_str_mv | 10.1002/cam4.4555 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3617b1f857ec4ef2b7e5832578373e0c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3617b1f857ec4ef2b7e5832578373e0c</doaj_id><sourcerecordid>2666487676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5765-7f97ea53f0fb6f81536d59e62cbe74b50d97ebff80f0db45ce3c4dee95c8a6dc3</originalsourceid><addsrcrecordid>eNp1kU1vEzEQhi0EolXogT-ALHFCalp7_bV7QaoiaCsVwQHOltcep442drB3i_bf4zShag_4MpbnnWdm_CL0npILSkhzac2WX3AhxCt02hAulkoy_vrZ_QSdlbIh9SjSSEXfohMmmk41lJyi6YcZA8TxHO_u5xJsMPEcm-jwLg3BztgbO6Zc8BQd5GEOcY0fTA61KEUcIp4K4OTxCANswdX6CNinjLNxR1GKNg1pPWNrooVcQ4Z36I03Q4GzY1ygX1-__FzdLO--X9-uru6WVihZp_edAiOYJ76XvqWCSSc6kI3tQfFeEFfzvfct8cT1XFhgljuATtjWSGfZAt0euC6Zjd7lsDV51skE_fiQ8lqbPAY7gGaSqp76ViiwHHzTKxAta4RqmWJA9qzPB9Zu6uuqtn5aNsML6MtMDPd6nR50R2nHBK-Aj0dATr8nKKPepCnHur9upJS8VbLatUCfDiqbUykZ_FMHSvTecL03XO8Nr9oPz0d6Uv6ztwouD4I_YYD5_yS9uvrGH5F_AfCRt40</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2666487676</pqid></control><display><type>article</type><title>Patient, physician, and policy factors underlying variation in use of telemedicine for radiation oncology cancer care</title><source>Wiley-Blackwell Open Access Collection</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>De, Brian ; Fu, Shuangshuang ; Chen, Ying‐Shiuan ; Das, Prajnan ; Ku, Kimberly ; Maroongroge, Sean ; Woodhouse, Kristina D. ; Hoffman, Karen E. ; Nguyen, Quynh‐Nhu ; Reed, Valerie K. ; Chen, Aileen B. ; Koong, Albert C. ; Smith, Benjamin D. ; Smith, Grace L.</creator><creatorcontrib>De, Brian ; Fu, Shuangshuang ; Chen, Ying‐Shiuan ; Das, Prajnan ; Ku, Kimberly ; Maroongroge, Sean ; Woodhouse, Kristina D. ; Hoffman, Karen E. ; Nguyen, Quynh‐Nhu ; Reed, Valerie K. ; Chen, Aileen B. ; Koong, Albert C. ; Smith, Benjamin D. ; Smith, Grace L.</creatorcontrib><description>Background
Oncology telemedicine was implemented rapidly after COVID‐19. We examined multilevel correlates and outcomes of telemedicine use for patients undergoing radiotherapy (RT) for cancer.
Methods
Upon implementation of a telemedicine platform at a comprehensive cancer center, we analyzed 468 consecutive patient RT courses from March 16, 2020 to June 1, 2020. Patients were categorized as using telemedicine during ≥1 weekly oncologist visits versus in‐person oncologist management only. Temporal trends were evaluated with Cochran‐Armitage tests; chi‐squared test and multilevel multivariable logistic models identified correlates of use and outcomes.
Results
Overall, 33% used telemedicine versus 67% in‐person only oncologist management. Temporal trends (ptrend < 0.001) correlated with policy changes: uptake was rapid after local social‐distancing restrictions, reaching peak use (35% of visits) within 4 weeks of implementation. Use declined to 15% after national “Opening Up America Again” guidelines. In the multilevel model, patients more likely to use telemedicine were White non‐Hispanic versus Black or Hispanic (odds ratio [OR] = 2.20, 95% confidence interval [CI] 1.03–4.72; p = 0.04) or receiving ≥6 fractions of RT versus 1–5 fractions (OR = 4.49, 95% CI 2.29–8.80; p < 0.001). Model intraclass correlation coefficient demonstrated 43% utilization variation was physician‐level driven. Treatment toxicities and 30‐day emergency visits or unplanned hospitalizations did not differ for patients using versus not using telemedicine (p > 0.05, all comparisons).
Conclusion
Though toxicities were similar with telemedicine oncology management, there remained lower uptake among non‐White patients. Continuing strategies for oncology telemedicine implementation should address multilevel patient, physician, and policy factors to optimize telemedicine's potential to surmount—and not exacerbate—barriers to quality cancer care.
In this analysis of 468 consecutive patients undergoing radiotherapy after the COVID‐19 pandemic‐driven implementation of an audiovisual telemedicine platform at a large comprehensive cancer center, non‐White patients were less likely to use telemedicine during acute cancer treatment, and 43% of the variation in use patterns was physician‐driven. The risk of treatment toxicities and 30‐day emergency visits or unplanned hospitalizations did not differ by use vs. no use of telemedicine.</description><identifier>ISSN: 2045-7634</identifier><identifier>EISSN: 2045-7634</identifier><identifier>DOI: 10.1002/cam4.4555</identifier><identifier>PMID: 35297210</identifier><language>eng</language><publisher>United States: John Wiley & Sons, Inc</publisher><subject>Cancer ; Cancer therapies ; Clinical outcomes ; Continuity of care ; Coronavirus Preparedness & Response Supplemental Appropriations Act 2020-US ; Coronaviruses ; COVID-19 ; COVID-19 - epidemiology ; COVID‐19 pandemic ; disparities ; Emergency medical care ; Ethnicity ; Hispanic Americans ; Hospitalization ; Humans ; Medical records ; Neoplasms - radiotherapy ; Oncologists ; Oncology ; Pandemics ; Patients ; Physicians ; Policy ; Radiation ; Radiation Oncology ; Radiation therapy ; radiotherapy ; Severe acute respiratory syndrome coronavirus 2 ; Telemedicine ; Trends</subject><ispartof>Cancer medicine (Malden, MA), 2022-05, Vol.11 (10), p.2096-2105</ispartof><rights>2022 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2022 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5765-7f97ea53f0fb6f81536d59e62cbe74b50d97ebff80f0db45ce3c4dee95c8a6dc3</citedby><cites>FETCH-LOGICAL-c5765-7f97ea53f0fb6f81536d59e62cbe74b50d97ebff80f0db45ce3c4dee95c8a6dc3</cites><orcidid>0000-0001-7866-1093 ; 0000-0003-3468-3359 ; 0000-0002-3171-2911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2666487676?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2666487676?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,11560,25751,27922,27923,37010,38514,43893,44588,46050,46474,53789,53791,74182,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35297210$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>De, Brian</creatorcontrib><creatorcontrib>Fu, Shuangshuang</creatorcontrib><creatorcontrib>Chen, Ying‐Shiuan</creatorcontrib><creatorcontrib>Das, Prajnan</creatorcontrib><creatorcontrib>Ku, Kimberly</creatorcontrib><creatorcontrib>Maroongroge, Sean</creatorcontrib><creatorcontrib>Woodhouse, Kristina D.</creatorcontrib><creatorcontrib>Hoffman, Karen E.</creatorcontrib><creatorcontrib>Nguyen, Quynh‐Nhu</creatorcontrib><creatorcontrib>Reed, Valerie K.</creatorcontrib><creatorcontrib>Chen, Aileen B.</creatorcontrib><creatorcontrib>Koong, Albert C.</creatorcontrib><creatorcontrib>Smith, Benjamin D.</creatorcontrib><creatorcontrib>Smith, Grace L.</creatorcontrib><title>Patient, physician, and policy factors underlying variation in use of telemedicine for radiation oncology cancer care</title><title>Cancer medicine (Malden, MA)</title><addtitle>Cancer Med</addtitle><description>Background
Oncology telemedicine was implemented rapidly after COVID‐19. We examined multilevel correlates and outcomes of telemedicine use for patients undergoing radiotherapy (RT) for cancer.
Methods
Upon implementation of a telemedicine platform at a comprehensive cancer center, we analyzed 468 consecutive patient RT courses from March 16, 2020 to June 1, 2020. Patients were categorized as using telemedicine during ≥1 weekly oncologist visits versus in‐person oncologist management only. Temporal trends were evaluated with Cochran‐Armitage tests; chi‐squared test and multilevel multivariable logistic models identified correlates of use and outcomes.
Results
Overall, 33% used telemedicine versus 67% in‐person only oncologist management. Temporal trends (ptrend < 0.001) correlated with policy changes: uptake was rapid after local social‐distancing restrictions, reaching peak use (35% of visits) within 4 weeks of implementation. Use declined to 15% after national “Opening Up America Again” guidelines. In the multilevel model, patients more likely to use telemedicine were White non‐Hispanic versus Black or Hispanic (odds ratio [OR] = 2.20, 95% confidence interval [CI] 1.03–4.72; p = 0.04) or receiving ≥6 fractions of RT versus 1–5 fractions (OR = 4.49, 95% CI 2.29–8.80; p < 0.001). Model intraclass correlation coefficient demonstrated 43% utilization variation was physician‐level driven. Treatment toxicities and 30‐day emergency visits or unplanned hospitalizations did not differ for patients using versus not using telemedicine (p > 0.05, all comparisons).
Conclusion
Though toxicities were similar with telemedicine oncology management, there remained lower uptake among non‐White patients. Continuing strategies for oncology telemedicine implementation should address multilevel patient, physician, and policy factors to optimize telemedicine's potential to surmount—and not exacerbate—barriers to quality cancer care.
In this analysis of 468 consecutive patients undergoing radiotherapy after the COVID‐19 pandemic‐driven implementation of an audiovisual telemedicine platform at a large comprehensive cancer center, non‐White patients were less likely to use telemedicine during acute cancer treatment, and 43% of the variation in use patterns was physician‐driven. The risk of treatment toxicities and 30‐day emergency visits or unplanned hospitalizations did not differ by use vs. no use of telemedicine.</description><subject>Cancer</subject><subject>Cancer therapies</subject><subject>Clinical outcomes</subject><subject>Continuity of care</subject><subject>Coronavirus Preparedness & Response Supplemental Appropriations Act 2020-US</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>COVID-19 - epidemiology</subject><subject>COVID‐19 pandemic</subject><subject>disparities</subject><subject>Emergency medical care</subject><subject>Ethnicity</subject><subject>Hispanic Americans</subject><subject>Hospitalization</subject><subject>Humans</subject><subject>Medical records</subject><subject>Neoplasms - radiotherapy</subject><subject>Oncologists</subject><subject>Oncology</subject><subject>Pandemics</subject><subject>Patients</subject><subject>Physicians</subject><subject>Policy</subject><subject>Radiation</subject><subject>Radiation Oncology</subject><subject>Radiation therapy</subject><subject>radiotherapy</subject><subject>Severe acute respiratory syndrome coronavirus 2</subject><subject>Telemedicine</subject><subject>Trends</subject><issn>2045-7634</issn><issn>2045-7634</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kU1vEzEQhi0EolXogT-ALHFCalp7_bV7QaoiaCsVwQHOltcep442drB3i_bf4zShag_4MpbnnWdm_CL0npILSkhzac2WX3AhxCt02hAulkoy_vrZ_QSdlbIh9SjSSEXfohMmmk41lJyi6YcZA8TxHO_u5xJsMPEcm-jwLg3BztgbO6Zc8BQd5GEOcY0fTA61KEUcIp4K4OTxCANswdX6CNinjLNxR1GKNg1pPWNrooVcQ4Z36I03Q4GzY1ygX1-__FzdLO--X9-uru6WVihZp_edAiOYJ76XvqWCSSc6kI3tQfFeEFfzvfct8cT1XFhgljuATtjWSGfZAt0euC6Zjd7lsDV51skE_fiQ8lqbPAY7gGaSqp76ViiwHHzTKxAta4RqmWJA9qzPB9Zu6uuqtn5aNsML6MtMDPd6nR50R2nHBK-Aj0dATr8nKKPepCnHur9upJS8VbLatUCfDiqbUykZ_FMHSvTecL03XO8Nr9oPz0d6Uv6ztwouD4I_YYD5_yS9uvrGH5F_AfCRt40</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>De, Brian</creator><creator>Fu, Shuangshuang</creator><creator>Chen, Ying‐Shiuan</creator><creator>Das, Prajnan</creator><creator>Ku, Kimberly</creator><creator>Maroongroge, Sean</creator><creator>Woodhouse, Kristina D.</creator><creator>Hoffman, Karen E.</creator><creator>Nguyen, Quynh‐Nhu</creator><creator>Reed, Valerie K.</creator><creator>Chen, Aileen B.</creator><creator>Koong, Albert C.</creator><creator>Smith, Benjamin D.</creator><creator>Smith, Grace L.</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7866-1093</orcidid><orcidid>https://orcid.org/0000-0003-3468-3359</orcidid><orcidid>https://orcid.org/0000-0002-3171-2911</orcidid></search><sort><creationdate>202205</creationdate><title>Patient, physician, and policy factors underlying variation in use of telemedicine for radiation oncology cancer care</title><author>De, Brian ; Fu, Shuangshuang ; Chen, Ying‐Shiuan ; Das, Prajnan ; Ku, Kimberly ; Maroongroge, Sean ; Woodhouse, Kristina D. ; Hoffman, Karen E. ; Nguyen, Quynh‐Nhu ; Reed, Valerie K. ; Chen, Aileen B. ; Koong, Albert C. ; Smith, Benjamin D. ; Smith, Grace L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5765-7f97ea53f0fb6f81536d59e62cbe74b50d97ebff80f0db45ce3c4dee95c8a6dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cancer</topic><topic>Cancer therapies</topic><topic>Clinical outcomes</topic><topic>Continuity of care</topic><topic>Coronavirus Preparedness & Response Supplemental Appropriations Act 2020-US</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>COVID-19 - epidemiology</topic><topic>COVID‐19 pandemic</topic><topic>disparities</topic><topic>Emergency medical care</topic><topic>Ethnicity</topic><topic>Hispanic Americans</topic><topic>Hospitalization</topic><topic>Humans</topic><topic>Medical records</topic><topic>Neoplasms - radiotherapy</topic><topic>Oncologists</topic><topic>Oncology</topic><topic>Pandemics</topic><topic>Patients</topic><topic>Physicians</topic><topic>Policy</topic><topic>Radiation</topic><topic>Radiation Oncology</topic><topic>Radiation therapy</topic><topic>radiotherapy</topic><topic>Severe acute respiratory syndrome coronavirus 2</topic><topic>Telemedicine</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De, Brian</creatorcontrib><creatorcontrib>Fu, Shuangshuang</creatorcontrib><creatorcontrib>Chen, Ying‐Shiuan</creatorcontrib><creatorcontrib>Das, Prajnan</creatorcontrib><creatorcontrib>Ku, Kimberly</creatorcontrib><creatorcontrib>Maroongroge, Sean</creatorcontrib><creatorcontrib>Woodhouse, Kristina D.</creatorcontrib><creatorcontrib>Hoffman, Karen E.</creatorcontrib><creatorcontrib>Nguyen, Quynh‐Nhu</creatorcontrib><creatorcontrib>Reed, Valerie K.</creatorcontrib><creatorcontrib>Chen, Aileen B.</creatorcontrib><creatorcontrib>Koong, Albert C.</creatorcontrib><creatorcontrib>Smith, Benjamin D.</creatorcontrib><creatorcontrib>Smith, Grace L.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley Online Library Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cancer medicine (Malden, MA)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De, Brian</au><au>Fu, Shuangshuang</au><au>Chen, Ying‐Shiuan</au><au>Das, Prajnan</au><au>Ku, Kimberly</au><au>Maroongroge, Sean</au><au>Woodhouse, Kristina D.</au><au>Hoffman, Karen E.</au><au>Nguyen, Quynh‐Nhu</au><au>Reed, Valerie K.</au><au>Chen, Aileen B.</au><au>Koong, Albert C.</au><au>Smith, Benjamin D.</au><au>Smith, Grace L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patient, physician, and policy factors underlying variation in use of telemedicine for radiation oncology cancer care</atitle><jtitle>Cancer medicine (Malden, MA)</jtitle><addtitle>Cancer Med</addtitle><date>2022-05</date><risdate>2022</risdate><volume>11</volume><issue>10</issue><spage>2096</spage><epage>2105</epage><pages>2096-2105</pages><issn>2045-7634</issn><eissn>2045-7634</eissn><abstract>Background
Oncology telemedicine was implemented rapidly after COVID‐19. We examined multilevel correlates and outcomes of telemedicine use for patients undergoing radiotherapy (RT) for cancer.
Methods
Upon implementation of a telemedicine platform at a comprehensive cancer center, we analyzed 468 consecutive patient RT courses from March 16, 2020 to June 1, 2020. Patients were categorized as using telemedicine during ≥1 weekly oncologist visits versus in‐person oncologist management only. Temporal trends were evaluated with Cochran‐Armitage tests; chi‐squared test and multilevel multivariable logistic models identified correlates of use and outcomes.
Results
Overall, 33% used telemedicine versus 67% in‐person only oncologist management. Temporal trends (ptrend < 0.001) correlated with policy changes: uptake was rapid after local social‐distancing restrictions, reaching peak use (35% of visits) within 4 weeks of implementation. Use declined to 15% after national “Opening Up America Again” guidelines. In the multilevel model, patients more likely to use telemedicine were White non‐Hispanic versus Black or Hispanic (odds ratio [OR] = 2.20, 95% confidence interval [CI] 1.03–4.72; p = 0.04) or receiving ≥6 fractions of RT versus 1–5 fractions (OR = 4.49, 95% CI 2.29–8.80; p < 0.001). Model intraclass correlation coefficient demonstrated 43% utilization variation was physician‐level driven. Treatment toxicities and 30‐day emergency visits or unplanned hospitalizations did not differ for patients using versus not using telemedicine (p > 0.05, all comparisons).
Conclusion
Though toxicities were similar with telemedicine oncology management, there remained lower uptake among non‐White patients. Continuing strategies for oncology telemedicine implementation should address multilevel patient, physician, and policy factors to optimize telemedicine's potential to surmount—and not exacerbate—barriers to quality cancer care.
In this analysis of 468 consecutive patients undergoing radiotherapy after the COVID‐19 pandemic‐driven implementation of an audiovisual telemedicine platform at a large comprehensive cancer center, non‐White patients were less likely to use telemedicine during acute cancer treatment, and 43% of the variation in use patterns was physician‐driven. The risk of treatment toxicities and 30‐day emergency visits or unplanned hospitalizations did not differ by use vs. no use of telemedicine.</abstract><cop>United States</cop><pub>John Wiley & Sons, Inc</pub><pmid>35297210</pmid><doi>10.1002/cam4.4555</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-7866-1093</orcidid><orcidid>https://orcid.org/0000-0003-3468-3359</orcidid><orcidid>https://orcid.org/0000-0002-3171-2911</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-7634 |
ispartof | Cancer medicine (Malden, MA), 2022-05, Vol.11 (10), p.2096-2105 |
issn | 2045-7634 2045-7634 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3617b1f857ec4ef2b7e5832578373e0c |
source | Wiley-Blackwell Open Access Collection; Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central; Coronavirus Research Database |
subjects | Cancer Cancer therapies Clinical outcomes Continuity of care Coronavirus Preparedness & Response Supplemental Appropriations Act 2020-US Coronaviruses COVID-19 COVID-19 - epidemiology COVID‐19 pandemic disparities Emergency medical care Ethnicity Hispanic Americans Hospitalization Humans Medical records Neoplasms - radiotherapy Oncologists Oncology Pandemics Patients Physicians Policy Radiation Radiation Oncology Radiation therapy radiotherapy Severe acute respiratory syndrome coronavirus 2 Telemedicine Trends |
title | Patient, physician, and policy factors underlying variation in use of telemedicine for radiation oncology cancer care |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A02%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patient,%20physician,%20and%20policy%20factors%20underlying%20variation%20in%20use%20of%20telemedicine%20for%20radiation%20oncology%20cancer%20care&rft.jtitle=Cancer%20medicine%20(Malden,%20MA)&rft.au=De,%20Brian&rft.date=2022-05&rft.volume=11&rft.issue=10&rft.spage=2096&rft.epage=2105&rft.pages=2096-2105&rft.issn=2045-7634&rft.eissn=2045-7634&rft_id=info:doi/10.1002/cam4.4555&rft_dat=%3Cproquest_doaj_%3E2666487676%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5765-7f97ea53f0fb6f81536d59e62cbe74b50d97ebff80f0db45ce3c4dee95c8a6dc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2666487676&rft_id=info:pmid/35297210&rfr_iscdi=true |