Loading…
An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes
Machine learning helps construct predictive models in clinical data analysis, predicting stock prices, picture recognition, financial modelling, disease prediction, and diagnostics. This paper proposes machine learning ensemble algorithms to forecast diabetes. The ensemble combines k-NN, Naive Bayes...
Saved in:
Published in: | International journal of computational intelligence systems 2023-02, Vol.16 (1), p.1-20, Article 14 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73 |
container_end_page | 20 |
container_issue | 1 |
container_start_page | 1 |
container_title | International journal of computational intelligence systems |
container_volume | 16 |
creator | Sai, M. Jishnu Chettri, Pratiksha Panigrahi, Ranjit Garg, Amik Bhoi, Akash Kumar Barsocchi, Paolo |
description | Machine learning helps construct predictive models in clinical data analysis, predicting stock prices, picture recognition, financial modelling, disease prediction, and diagnostics. This paper proposes machine learning ensemble algorithms to forecast diabetes. The ensemble combines k-NN, Naive Bayes (Gaussian), Random Forest (RF), Adaboost, and a recently designed Light Gradient Boosting Machine. The proposed ensembles inherit detection ability of LightGBM to boost accuracy. Under fivefold cross-validation, the proposed ensemble models perform better than other recent models. The
k
-NN, Adaboost, and LightGBM jointly achieve 90.76% detection accuracy. The receiver operating curve analysis shows that
k
-NN, RF, and LightGBM successfully solve class imbalance issue of the underlying dataset. |
doi_str_mv | 10.1007/s44196-023-00184-y |
format | article |
fullrecord | <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_361ddcb59923415cb1c9d55f65e3dae9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_361ddcb59923415cb1c9d55f65e3dae9</doaj_id><sourcerecordid>oai_doaj_org_article_361ddcb59923415cb1c9d55f65e3dae9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhSdGEwnyAq76AqO9_ZuZJSIiCUYXuG46_YESaEk7mvD2DmDUlat7c889X3JOUdwCvgOMq_vMGDSixISWGEPNysNFMYC64qWoa3r5Z78uRjlvMMYEGMaMDQo3Dmgast21W4uiQwu_WndolpTxNnToIcbc-bBCL0qvfbBIBYPGRu07_2l_VRcTekvWeN35GI6c5WFvS4IevWptZ_NNceXUNtvR9xwW70_T5eS5XLzO5pPxotSMNF3JW1JzwpwWivIWgIqKa2EIM4y6PqM2DEStagABuJe0c6omBCpWNYTpig6L-ZlrotrIffI7lQ4yKi9Ph5hWUqXO662VVIAxuuVNQygDrlvQjeHcCW6pUbbpWeTM0inmnKz74QGWx-LluXjZFy9PxctDb6JnU-6fw8omuYkfKfSZ_3N9AdE0hS0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Sai, M. Jishnu ; Chettri, Pratiksha ; Panigrahi, Ranjit ; Garg, Amik ; Bhoi, Akash Kumar ; Barsocchi, Paolo</creator><creatorcontrib>Sai, M. Jishnu ; Chettri, Pratiksha ; Panigrahi, Ranjit ; Garg, Amik ; Bhoi, Akash Kumar ; Barsocchi, Paolo</creatorcontrib><description>Machine learning helps construct predictive models in clinical data analysis, predicting stock prices, picture recognition, financial modelling, disease prediction, and diagnostics. This paper proposes machine learning ensemble algorithms to forecast diabetes. The ensemble combines k-NN, Naive Bayes (Gaussian), Random Forest (RF), Adaboost, and a recently designed Light Gradient Boosting Machine. The proposed ensembles inherit detection ability of LightGBM to boost accuracy. Under fivefold cross-validation, the proposed ensemble models perform better than other recent models. The
k
-NN, Adaboost, and LightGBM jointly achieve 90.76% detection accuracy. The receiver operating curve analysis shows that
k
-NN, RF, and LightGBM successfully solve class imbalance issue of the underlying dataset.</description><identifier>ISSN: 1875-6883</identifier><identifier>EISSN: 1875-6883</identifier><identifier>DOI: 10.1007/s44196-023-00184-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Classifier ensemble ; Computational Intelligence ; Control ; Diabetes detection ; Engineering ; k-NN ; Light GBM (Gradient Boosting Machine) ; Mathematical Logic and Foundations ; Mechatronics ; Naive Bayes (Gaussian) ; Random forest ; Research Article ; Robotics</subject><ispartof>International journal of computational intelligence systems, 2023-02, Vol.16 (1), p.1-20, Article 14</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73</citedby><cites>FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73</cites><orcidid>0000-0002-6862-7593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sai, M. Jishnu</creatorcontrib><creatorcontrib>Chettri, Pratiksha</creatorcontrib><creatorcontrib>Panigrahi, Ranjit</creatorcontrib><creatorcontrib>Garg, Amik</creatorcontrib><creatorcontrib>Bhoi, Akash Kumar</creatorcontrib><creatorcontrib>Barsocchi, Paolo</creatorcontrib><title>An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes</title><title>International journal of computational intelligence systems</title><addtitle>Int J Comput Intell Syst</addtitle><description>Machine learning helps construct predictive models in clinical data analysis, predicting stock prices, picture recognition, financial modelling, disease prediction, and diagnostics. This paper proposes machine learning ensemble algorithms to forecast diabetes. The ensemble combines k-NN, Naive Bayes (Gaussian), Random Forest (RF), Adaboost, and a recently designed Light Gradient Boosting Machine. The proposed ensembles inherit detection ability of LightGBM to boost accuracy. Under fivefold cross-validation, the proposed ensemble models perform better than other recent models. The
k
-NN, Adaboost, and LightGBM jointly achieve 90.76% detection accuracy. The receiver operating curve analysis shows that
k
-NN, RF, and LightGBM successfully solve class imbalance issue of the underlying dataset.</description><subject>Artificial Intelligence</subject><subject>Classifier ensemble</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Diabetes detection</subject><subject>Engineering</subject><subject>k-NN</subject><subject>Light GBM (Gradient Boosting Machine)</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Naive Bayes (Gaussian)</subject><subject>Random forest</subject><subject>Research Article</subject><subject>Robotics</subject><issn>1875-6883</issn><issn>1875-6883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kM1OAjEUhSdGEwnyAq76AqO9_ZuZJSIiCUYXuG46_YESaEk7mvD2DmDUlat7c889X3JOUdwCvgOMq_vMGDSixISWGEPNysNFMYC64qWoa3r5Z78uRjlvMMYEGMaMDQo3Dmgast21W4uiQwu_WndolpTxNnToIcbc-bBCL0qvfbBIBYPGRu07_2l_VRcTekvWeN35GI6c5WFvS4IevWptZ_NNceXUNtvR9xwW70_T5eS5XLzO5pPxotSMNF3JW1JzwpwWivIWgIqKa2EIM4y6PqM2DEStagABuJe0c6omBCpWNYTpig6L-ZlrotrIffI7lQ4yKi9Ph5hWUqXO662VVIAxuuVNQygDrlvQjeHcCW6pUbbpWeTM0inmnKz74QGWx-LluXjZFy9PxctDb6JnU-6fw8omuYkfKfSZ_3N9AdE0hS0</recordid><startdate>20230212</startdate><enddate>20230212</enddate><creator>Sai, M. Jishnu</creator><creator>Chettri, Pratiksha</creator><creator>Panigrahi, Ranjit</creator><creator>Garg, Amik</creator><creator>Bhoi, Akash Kumar</creator><creator>Barsocchi, Paolo</creator><general>Springer Netherlands</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6862-7593</orcidid></search><sort><creationdate>20230212</creationdate><title>An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes</title><author>Sai, M. Jishnu ; Chettri, Pratiksha ; Panigrahi, Ranjit ; Garg, Amik ; Bhoi, Akash Kumar ; Barsocchi, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Classifier ensemble</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Diabetes detection</topic><topic>Engineering</topic><topic>k-NN</topic><topic>Light GBM (Gradient Boosting Machine)</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Naive Bayes (Gaussian)</topic><topic>Random forest</topic><topic>Research Article</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sai, M. Jishnu</creatorcontrib><creatorcontrib>Chettri, Pratiksha</creatorcontrib><creatorcontrib>Panigrahi, Ranjit</creatorcontrib><creatorcontrib>Garg, Amik</creatorcontrib><creatorcontrib>Bhoi, Akash Kumar</creatorcontrib><creatorcontrib>Barsocchi, Paolo</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of computational intelligence systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sai, M. Jishnu</au><au>Chettri, Pratiksha</au><au>Panigrahi, Ranjit</au><au>Garg, Amik</au><au>Bhoi, Akash Kumar</au><au>Barsocchi, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes</atitle><jtitle>International journal of computational intelligence systems</jtitle><stitle>Int J Comput Intell Syst</stitle><date>2023-02-12</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><artnum>14</artnum><issn>1875-6883</issn><eissn>1875-6883</eissn><abstract>Machine learning helps construct predictive models in clinical data analysis, predicting stock prices, picture recognition, financial modelling, disease prediction, and diagnostics. This paper proposes machine learning ensemble algorithms to forecast diabetes. The ensemble combines k-NN, Naive Bayes (Gaussian), Random Forest (RF), Adaboost, and a recently designed Light Gradient Boosting Machine. The proposed ensembles inherit detection ability of LightGBM to boost accuracy. Under fivefold cross-validation, the proposed ensemble models perform better than other recent models. The
k
-NN, Adaboost, and LightGBM jointly achieve 90.76% detection accuracy. The receiver operating curve analysis shows that
k
-NN, RF, and LightGBM successfully solve class imbalance issue of the underlying dataset.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s44196-023-00184-y</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6862-7593</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1875-6883 |
ispartof | International journal of computational intelligence systems, 2023-02, Vol.16 (1), p.1-20, Article 14 |
issn | 1875-6883 1875-6883 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_361ddcb59923415cb1c9d55f65e3dae9 |
source | Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Artificial Intelligence Classifier ensemble Computational Intelligence Control Diabetes detection Engineering k-NN Light GBM (Gradient Boosting Machine) Mathematical Logic and Foundations Mechatronics Naive Bayes (Gaussian) Random forest Research Article Robotics |
title | An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ensemble%20of%20Light%20Gradient%20Boosting%20Machine%20and%20Adaptive%20Boosting%20for%20Prediction%20of%20Type-2%20Diabetes&rft.jtitle=International%20journal%20of%20computational%20intelligence%20systems&rft.au=Sai,%20M.%20Jishnu&rft.date=2023-02-12&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.artnum=14&rft.issn=1875-6883&rft.eissn=1875-6883&rft_id=info:doi/10.1007/s44196-023-00184-y&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_361ddcb59923415cb1c9d55f65e3dae9%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |