Loading…

An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes

Machine learning helps construct predictive models in clinical data analysis, predicting stock prices, picture recognition, financial modelling, disease prediction, and diagnostics. This paper proposes machine learning ensemble algorithms to forecast diabetes. The ensemble combines k-NN, Naive Bayes...

Full description

Saved in:
Bibliographic Details
Published in:International journal of computational intelligence systems 2023-02, Vol.16 (1), p.1-20, Article 14
Main Authors: Sai, M. Jishnu, Chettri, Pratiksha, Panigrahi, Ranjit, Garg, Amik, Bhoi, Akash Kumar, Barsocchi, Paolo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73
cites cdi_FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73
container_end_page 20
container_issue 1
container_start_page 1
container_title International journal of computational intelligence systems
container_volume 16
creator Sai, M. Jishnu
Chettri, Pratiksha
Panigrahi, Ranjit
Garg, Amik
Bhoi, Akash Kumar
Barsocchi, Paolo
description Machine learning helps construct predictive models in clinical data analysis, predicting stock prices, picture recognition, financial modelling, disease prediction, and diagnostics. This paper proposes machine learning ensemble algorithms to forecast diabetes. The ensemble combines k-NN, Naive Bayes (Gaussian), Random Forest (RF), Adaboost, and a recently designed Light Gradient Boosting Machine. The proposed ensembles inherit detection ability of LightGBM to boost accuracy. Under fivefold cross-validation, the proposed ensemble models perform better than other recent models. The k -NN, Adaboost, and LightGBM jointly achieve 90.76% detection accuracy. The receiver operating curve analysis shows that k -NN, RF, and LightGBM successfully solve class imbalance issue of the underlying dataset.
doi_str_mv 10.1007/s44196-023-00184-y
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_361ddcb59923415cb1c9d55f65e3dae9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_361ddcb59923415cb1c9d55f65e3dae9</doaj_id><sourcerecordid>oai_doaj_org_article_361ddcb59923415cb1c9d55f65e3dae9</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73</originalsourceid><addsrcrecordid>eNp9kM1OAjEUhSdGEwnyAq76AqO9_ZuZJSIiCUYXuG46_YESaEk7mvD2DmDUlat7c889X3JOUdwCvgOMq_vMGDSixISWGEPNysNFMYC64qWoa3r5Z78uRjlvMMYEGMaMDQo3Dmgast21W4uiQwu_WndolpTxNnToIcbc-bBCL0qvfbBIBYPGRu07_2l_VRcTekvWeN35GI6c5WFvS4IevWptZ_NNceXUNtvR9xwW70_T5eS5XLzO5pPxotSMNF3JW1JzwpwWivIWgIqKa2EIM4y6PqM2DEStagABuJe0c6omBCpWNYTpig6L-ZlrotrIffI7lQ4yKi9Ph5hWUqXO662VVIAxuuVNQygDrlvQjeHcCW6pUbbpWeTM0inmnKz74QGWx-LluXjZFy9PxctDb6JnU-6fw8omuYkfKfSZ_3N9AdE0hS0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes</title><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Sai, M. Jishnu ; Chettri, Pratiksha ; Panigrahi, Ranjit ; Garg, Amik ; Bhoi, Akash Kumar ; Barsocchi, Paolo</creator><creatorcontrib>Sai, M. Jishnu ; Chettri, Pratiksha ; Panigrahi, Ranjit ; Garg, Amik ; Bhoi, Akash Kumar ; Barsocchi, Paolo</creatorcontrib><description>Machine learning helps construct predictive models in clinical data analysis, predicting stock prices, picture recognition, financial modelling, disease prediction, and diagnostics. This paper proposes machine learning ensemble algorithms to forecast diabetes. The ensemble combines k-NN, Naive Bayes (Gaussian), Random Forest (RF), Adaboost, and a recently designed Light Gradient Boosting Machine. The proposed ensembles inherit detection ability of LightGBM to boost accuracy. Under fivefold cross-validation, the proposed ensemble models perform better than other recent models. The k -NN, Adaboost, and LightGBM jointly achieve 90.76% detection accuracy. The receiver operating curve analysis shows that k -NN, RF, and LightGBM successfully solve class imbalance issue of the underlying dataset.</description><identifier>ISSN: 1875-6883</identifier><identifier>EISSN: 1875-6883</identifier><identifier>DOI: 10.1007/s44196-023-00184-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Artificial Intelligence ; Classifier ensemble ; Computational Intelligence ; Control ; Diabetes detection ; Engineering ; k-NN ; Light GBM (Gradient Boosting Machine) ; Mathematical Logic and Foundations ; Mechatronics ; Naive Bayes (Gaussian) ; Random forest ; Research Article ; Robotics</subject><ispartof>International journal of computational intelligence systems, 2023-02, Vol.16 (1), p.1-20, Article 14</ispartof><rights>The Author(s) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73</citedby><cites>FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73</cites><orcidid>0000-0002-6862-7593</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sai, M. Jishnu</creatorcontrib><creatorcontrib>Chettri, Pratiksha</creatorcontrib><creatorcontrib>Panigrahi, Ranjit</creatorcontrib><creatorcontrib>Garg, Amik</creatorcontrib><creatorcontrib>Bhoi, Akash Kumar</creatorcontrib><creatorcontrib>Barsocchi, Paolo</creatorcontrib><title>An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes</title><title>International journal of computational intelligence systems</title><addtitle>Int J Comput Intell Syst</addtitle><description>Machine learning helps construct predictive models in clinical data analysis, predicting stock prices, picture recognition, financial modelling, disease prediction, and diagnostics. This paper proposes machine learning ensemble algorithms to forecast diabetes. The ensemble combines k-NN, Naive Bayes (Gaussian), Random Forest (RF), Adaboost, and a recently designed Light Gradient Boosting Machine. The proposed ensembles inherit detection ability of LightGBM to boost accuracy. Under fivefold cross-validation, the proposed ensemble models perform better than other recent models. The k -NN, Adaboost, and LightGBM jointly achieve 90.76% detection accuracy. The receiver operating curve analysis shows that k -NN, RF, and LightGBM successfully solve class imbalance issue of the underlying dataset.</description><subject>Artificial Intelligence</subject><subject>Classifier ensemble</subject><subject>Computational Intelligence</subject><subject>Control</subject><subject>Diabetes detection</subject><subject>Engineering</subject><subject>k-NN</subject><subject>Light GBM (Gradient Boosting Machine)</subject><subject>Mathematical Logic and Foundations</subject><subject>Mechatronics</subject><subject>Naive Bayes (Gaussian)</subject><subject>Random forest</subject><subject>Research Article</subject><subject>Robotics</subject><issn>1875-6883</issn><issn>1875-6883</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kM1OAjEUhSdGEwnyAq76AqO9_ZuZJSIiCUYXuG46_YESaEk7mvD2DmDUlat7c889X3JOUdwCvgOMq_vMGDSixISWGEPNysNFMYC64qWoa3r5Z78uRjlvMMYEGMaMDQo3Dmgast21W4uiQwu_WndolpTxNnToIcbc-bBCL0qvfbBIBYPGRu07_2l_VRcTekvWeN35GI6c5WFvS4IevWptZ_NNceXUNtvR9xwW70_T5eS5XLzO5pPxotSMNF3JW1JzwpwWivIWgIqKa2EIM4y6PqM2DEStagABuJe0c6omBCpWNYTpig6L-ZlrotrIffI7lQ4yKi9Ph5hWUqXO662VVIAxuuVNQygDrlvQjeHcCW6pUbbpWeTM0inmnKz74QGWx-LluXjZFy9PxctDb6JnU-6fw8omuYkfKfSZ_3N9AdE0hS0</recordid><startdate>20230212</startdate><enddate>20230212</enddate><creator>Sai, M. Jishnu</creator><creator>Chettri, Pratiksha</creator><creator>Panigrahi, Ranjit</creator><creator>Garg, Amik</creator><creator>Bhoi, Akash Kumar</creator><creator>Barsocchi, Paolo</creator><general>Springer Netherlands</general><general>Springer</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6862-7593</orcidid></search><sort><creationdate>20230212</creationdate><title>An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes</title><author>Sai, M. Jishnu ; Chettri, Pratiksha ; Panigrahi, Ranjit ; Garg, Amik ; Bhoi, Akash Kumar ; Barsocchi, Paolo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial Intelligence</topic><topic>Classifier ensemble</topic><topic>Computational Intelligence</topic><topic>Control</topic><topic>Diabetes detection</topic><topic>Engineering</topic><topic>k-NN</topic><topic>Light GBM (Gradient Boosting Machine)</topic><topic>Mathematical Logic and Foundations</topic><topic>Mechatronics</topic><topic>Naive Bayes (Gaussian)</topic><topic>Random forest</topic><topic>Research Article</topic><topic>Robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sai, M. Jishnu</creatorcontrib><creatorcontrib>Chettri, Pratiksha</creatorcontrib><creatorcontrib>Panigrahi, Ranjit</creatorcontrib><creatorcontrib>Garg, Amik</creatorcontrib><creatorcontrib>Bhoi, Akash Kumar</creatorcontrib><creatorcontrib>Barsocchi, Paolo</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of computational intelligence systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sai, M. Jishnu</au><au>Chettri, Pratiksha</au><au>Panigrahi, Ranjit</au><au>Garg, Amik</au><au>Bhoi, Akash Kumar</au><au>Barsocchi, Paolo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes</atitle><jtitle>International journal of computational intelligence systems</jtitle><stitle>Int J Comput Intell Syst</stitle><date>2023-02-12</date><risdate>2023</risdate><volume>16</volume><issue>1</issue><spage>1</spage><epage>20</epage><pages>1-20</pages><artnum>14</artnum><issn>1875-6883</issn><eissn>1875-6883</eissn><abstract>Machine learning helps construct predictive models in clinical data analysis, predicting stock prices, picture recognition, financial modelling, disease prediction, and diagnostics. This paper proposes machine learning ensemble algorithms to forecast diabetes. The ensemble combines k-NN, Naive Bayes (Gaussian), Random Forest (RF), Adaboost, and a recently designed Light Gradient Boosting Machine. The proposed ensembles inherit detection ability of LightGBM to boost accuracy. Under fivefold cross-validation, the proposed ensemble models perform better than other recent models. The k -NN, Adaboost, and LightGBM jointly achieve 90.76% detection accuracy. The receiver operating curve analysis shows that k -NN, RF, and LightGBM successfully solve class imbalance issue of the underlying dataset.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s44196-023-00184-y</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-6862-7593</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1875-6883
ispartof International journal of computational intelligence systems, 2023-02, Vol.16 (1), p.1-20, Article 14
issn 1875-6883
1875-6883
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_361ddcb59923415cb1c9d55f65e3dae9
source Springer Nature - SpringerLink Journals - Fully Open Access
subjects Artificial Intelligence
Classifier ensemble
Computational Intelligence
Control
Diabetes detection
Engineering
k-NN
Light GBM (Gradient Boosting Machine)
Mathematical Logic and Foundations
Mechatronics
Naive Bayes (Gaussian)
Random forest
Research Article
Robotics
title An Ensemble of Light Gradient Boosting Machine and Adaptive Boosting for Prediction of Type-2 Diabetes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T20%3A37%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Ensemble%20of%20Light%20Gradient%20Boosting%20Machine%20and%20Adaptive%20Boosting%20for%20Prediction%20of%20Type-2%20Diabetes&rft.jtitle=International%20journal%20of%20computational%20intelligence%20systems&rft.au=Sai,%20M.%20Jishnu&rft.date=2023-02-12&rft.volume=16&rft.issue=1&rft.spage=1&rft.epage=20&rft.pages=1-20&rft.artnum=14&rft.issn=1875-6883&rft.eissn=1875-6883&rft_id=info:doi/10.1007/s44196-023-00184-y&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_361ddcb59923415cb1c9d55f65e3dae9%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-5b28524fc6a35b113675c6d24d43f196cd4168a81161075ccffa8221747924c73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true