Loading…

Effect of Polydextrose on the Growth of Pediococcus pentosaceus as Well as Lactic Acid and Bacteriocin-like Inhibitory Substances (BLIS) Production

Pediococcus pentosaceus was cultivated in MRS medium supplemented or not with polydextrose under different conditions in order to evaluate its effect on cell growth, lactic acid and bacteriocin-like inhibitory substance (BLIS) production. Independent variables were pH (4.0, 5.0, 6.0), rotational spe...

Full description

Saved in:
Bibliographic Details
Published in:Microorganisms (Basel) 2022-09, Vol.10 (10), p.1898
Main Authors: Wanderley Porto, Maria Carolina, de Souza de Azevedo, Pamela Oliveira, Lourenço, Felipe Rebello, Converti, Attilio, Vitolo, Michele, Oliveira, Ricardo Pinheiro de Souza
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Pediococcus pentosaceus was cultivated in MRS medium supplemented or not with polydextrose under different conditions in order to evaluate its effect on cell growth, lactic acid and bacteriocin-like inhibitory substance (BLIS) production. Independent variables were pH (4.0, 5.0, 6.0), rotational speed (50, 100, 150 rpm), polydextrose concentration (0.5, 1.0, 1.5%) and temperature (25, 30, 35 °C), while cell concentration and productivity after 24 h, maximum specific growth rate, specific rate of substrate (glucose) consumption, volumetric and specific lactic acid productivities, yields of biomass and lactic acid on consumed substrate were the dependent. The maximum cell concentration (10.24 ± 0.16 gX L−1) and productivity (0.42 ± 0.01 gX L−1 h−1) were achieved at pH 6.0, 35 °C, 150 rpm using 1.5% polydextrose, while the maximum specific growth rate (0.99 ± 0.01 h−1) and yield of biomass (2.96 ± 0.34 gX gS−1) were achieved at the same pH and polydextrose concentration, but at 25 °C and 50 rpm. The specific substrate consumption rate (0.09 ± 0.02 gS gX−1 h−1) and the volumetric lactic acid productivity (0.44 ± 0.02 gP L−1 h−1) were maximized at pH 6.0, 35 °C, 50 rpm and 0.5% polydextrose. BLIS produced in this last run displayed the highest antibacterial activity against Escherichia coli, while the same activity was displayed against Enterococcus faecium using 1.5% polydextrose. These results appear to be quite promising in view of possible production of this BLIS as an antibacterial agent in the food industry.
ISSN:2076-2607
2076-2607
DOI:10.3390/microorganisms10101898