Loading…
InSARTrac Field Tests—Combining Computer Vision and Terrestrial InSAR for 3D Displacement Monitoring
InSARTrac is an innovative method for 3D displacement monitoring that combines terrestrial interferometric synthetic aperture radar (InSAR) and computer vision-based feature tracking. The 3D measurements obtained are considered far superior to 1D or 2D data and facilitate evaluations concerning the...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2023-04, Vol.15 (8), p.2031 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | InSARTrac is an innovative method for 3D displacement monitoring that combines terrestrial interferometric synthetic aperture radar (InSAR) and computer vision-based feature tracking. The 3D measurements obtained are considered far superior to 1D or 2D data and facilitate evaluations concerning the mechanisms controlling kinematics. This study presents the results of InSARTrac measurements at the Mölltal Glacier in Carinthia, Austria. The duration of glacier monitoring was four weeks and involved two instrument setup positions to obtain comparative measurements of supraglacial rock debris from different angles without utilizing retroreflectors. The mean displacement rate of the resultant vector is 22 mm/day and includes ~11 mm/day in the downgradient ice surface direction and 6 to 18 mm/day vertically downward. Additionally, the entire glacier surface was measured three times using a LIDAR-equipped UAV, revealing mean vertical displacements of 16 mm/day. The measurements indicate an InSARTrac accuracy of 4.2 ppm, which is 27% lower than in the initial controlled tests utilizing retroreflectors. The field test demonstrates the capability of InSARTrac to provide meaningful 3D displacement measurements of supraglacial rock debris. The material monitored has texture and reflectivity similar to certain classes of landslides, rock glaciers, and other alpine processes, indicating that InSARTrac has promising applications for monitoring a variety of geologic phenomena. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs15082031 |