Loading…

Chemical Composition and Source of PM2.5 during Winter Heating Period in Guanzhong Basin

An intensive field campaign was carried out from December 2022 to March 2023 at six different sites across five major cities (Xi’an, Baoji, Xianyang, Weinan, and Hancheng) in the Guanzhong Basin, China, covering most of the heating period there, which is characterized by high PM2.5 pollution levels....

Full description

Saved in:
Bibliographic Details
Published in:Atmosphere 2023-11, Vol.14 (11), p.1640
Main Authors: Cao, Lei, Tao, Yanan, Zheng, Hao, Wang, Mei, Li, Shiying, Xu, Yongjiang, Li, Mei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An intensive field campaign was carried out from December 2022 to March 2023 at six different sites across five major cities (Xi’an, Baoji, Xianyang, Weinan, and Hancheng) in the Guanzhong Basin, China, covering most of the heating period there, which is characterized by high PM2.5 pollution levels. During the campaign, the mean PM2.5 concentrations at these sites exceeded the 24 h PM2.5 standard (75 μg m−3), except the site at Hancheng, with mean PM2.5 concentrations of 57.8 ± 32.3 μg m−3. The source apportionment of PM2.5 varied significantly across sites, with vehicle exhaust being the dominant source at urban sites located in Xi’an and Baoji, coal combustion at suburban sites in Hancheng, and comparable contribution from coal combustion and industrial emissions at suburban sites in Xianyang and Weinan. Compared with clean condition, the contribution of vehicle exhaust and secondary inorganic sources (SIs) were largely enhanced during heavy PM2.5 pollution periods, while the contribution from biomass burning (BB) and dust decreased significantly at all sites. Combined with an analysis of meteorological parameters, the study further found that higher contributions of SIs and heavy PM2.5 pollution were generally associated with higher relative humidity (RH). In addition, higher PM2.5 concentrations at suburban sites were related to lower wind speeds, which could be explained by the stagnant condition favoring the accumulation of local emissions as well as the formation of secondary pollutants. In contrast, at urban sites (e.g., Xianyang), higher PM2.5 concentrations were more associated with the strong influence of vehicle exhaust at slightly higher wind speeds.
ISSN:2073-4433
2073-4433
DOI:10.3390/atmos14111640