Loading…
Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures
Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly useful way of obtaining highly compressed represent...
Saved in:
Published in: | Biomolecules (Basel, Switzerland) Switzerland), 2021-11, Vol.11 (12), p.1788 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-bbbab67374713b1b485cdf82e1fdb5e0b78992dbac89115936b2d407c5f2fd983 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-bbbab67374713b1b485cdf82e1fdb5e0b78992dbac89115936b2d407c5f2fd983 |
container_end_page | |
container_issue | 12 |
container_start_page | 1788 |
container_title | Biomolecules (Basel, Switzerland) |
container_volume | 11 |
creator | Duong, Vy T Diessner, Elizabeth M Grazioli, Gianmarc Martin, Rachel W Butts, Carter T |
description | Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly useful way of obtaining highly compressed representations of molecular structures, and simulations operating via such representations can achieve substantial computational savings. A drawback of coarse-graining, however, is the loss of atomistic detail-an effect that is especially acute for topological representations such as protein structure networks (PSNs). Here, we introduce an approach based on a combination of machine learning and physically-guided refinement for inferring atomic coordinates from PSNs. This "neural upscaling" procedure exploits the constraints implied by PSNs on possible configurations, as well as differences in the likelihood of observing different configurations with the same PSN. Using a 1 μs atomistic molecular dynamics trajectory of Aβ1-40, we show that neural upscaling is able to effectively recapitulate detailed structural information for intrinsically disordered proteins, being particularly successful in recovering features such as transient secondary structure. These results suggest that scalable network-based models for protein structure and dynamics may be used in settings where atomistic detail is desired, with upscaling employed to impute atomic coordinates from PSNs. |
doi_str_mv | 10.3390/biom11121788 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_365b927f285646e79a284277e3bff8a2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_365b927f285646e79a284277e3bff8a2</doaj_id><sourcerecordid>2612752560</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-bbbab67374713b1b485cdf82e1fdb5e0b78992dbac89115936b2d407c5f2fd983</originalsourceid><addsrcrecordid>eNpdkdFrFDEQxoMotpx981kWfPHB1c0ku0lehFK0Fo4qasW3kGQn5557mzPJtvjfm_NqvRoGEmY-fky-j5CntHnFmGpe2yFsKKVAhZQPyDEAlTUI9u3hwfuInKS0bsqRpYA9JkeMK845g2Py9RLnaMbqapucGYdpVfkYNtUnTEM_Y73EaxyrjzFkHKbqc46zy3PE6hLzTYg_UpVDdZrDZkh5cP_m6Ql55M2Y8OT2XpCrd2-_nL2vlx_OL85Ol7XjQubaWmtsJ5jggjJLLZet670EpL63LTZWSKWgt8ZJRWmrWGeh541wrQffK8kW5GLP7YNZ620cNib-0sEM-k8jxJU2saw2omZdaxUID7LteIdCGZAchEBmvZcGCuvNnrWd7QZ7h1MuztyD3p9Mw3e9CtdadkoWawvgxS0ghp8zpqyLLw7H0UwY5qShoxyYoMX5BXn-n3Qd5jgVq3YqEC203Q74cq9yMaQU0d8tQxu9y18f5l_kzw4_cCf-mzb7Db_erE0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612752560</pqid></control><display><type>article</type><title>Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures</title><source>Open Access: PubMed Central</source><source>ProQuest - Publicly Available Content Database</source><source>Coronavirus Research Database</source><creator>Duong, Vy T ; Diessner, Elizabeth M ; Grazioli, Gianmarc ; Martin, Rachel W ; Butts, Carter T</creator><creatorcontrib>Duong, Vy T ; Diessner, Elizabeth M ; Grazioli, Gianmarc ; Martin, Rachel W ; Butts, Carter T</creatorcontrib><description>Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly useful way of obtaining highly compressed representations of molecular structures, and simulations operating via such representations can achieve substantial computational savings. A drawback of coarse-graining, however, is the loss of atomistic detail-an effect that is especially acute for topological representations such as protein structure networks (PSNs). Here, we introduce an approach based on a combination of machine learning and physically-guided refinement for inferring atomic coordinates from PSNs. This "neural upscaling" procedure exploits the constraints implied by PSNs on possible configurations, as well as differences in the likelihood of observing different configurations with the same PSN. Using a 1 μs atomistic molecular dynamics trajectory of Aβ1-40, we show that neural upscaling is able to effectively recapitulate detailed structural information for intrinsically disordered proteins, being particularly successful in recovering features such as transient secondary structure. These results suggest that scalable network-based models for protein structure and dynamics may be used in settings where atomistic detail is desired, with upscaling employed to impute atomic coordinates from PSNs.</description><identifier>ISSN: 2218-273X</identifier><identifier>EISSN: 2218-273X</identifier><identifier>DOI: 10.3390/biom11121788</identifier><identifier>PMID: 34944432</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Alzheimer's disease ; coarse-grained models ; Computer applications ; Cost control ; intrinsically disordered proteins ; Intrinsically Disordered Proteins - chemistry ; Learning algorithms ; Machine Learning ; Macromolecules ; Models, Molecular ; molecular dynamics ; Molecular Dynamics Simulation ; Neural networks ; Neural Networks, Computer ; Parameter estimation ; Protein structure ; protein structure networks ; Proteins ; Secondary structure ; Simulation ; Thermodynamics</subject><ispartof>Biomolecules (Basel, Switzerland), 2021-11, Vol.11 (12), p.1788</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2021 by the authors. 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-bbbab67374713b1b485cdf82e1fdb5e0b78992dbac89115936b2d407c5f2fd983</citedby><cites>FETCH-LOGICAL-c478t-bbbab67374713b1b485cdf82e1fdb5e0b78992dbac89115936b2d407c5f2fd983</cites><orcidid>0000-0003-2559-5103 ; 0000-0002-7911-9834 ; 0000-0001-9996-7411 ; 0000-0002-8884-4157</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2612752560/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2612752560?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793,74412,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34944432$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Duong, Vy T</creatorcontrib><creatorcontrib>Diessner, Elizabeth M</creatorcontrib><creatorcontrib>Grazioli, Gianmarc</creatorcontrib><creatorcontrib>Martin, Rachel W</creatorcontrib><creatorcontrib>Butts, Carter T</creatorcontrib><title>Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures</title><title>Biomolecules (Basel, Switzerland)</title><addtitle>Biomolecules</addtitle><description>Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly useful way of obtaining highly compressed representations of molecular structures, and simulations operating via such representations can achieve substantial computational savings. A drawback of coarse-graining, however, is the loss of atomistic detail-an effect that is especially acute for topological representations such as protein structure networks (PSNs). Here, we introduce an approach based on a combination of machine learning and physically-guided refinement for inferring atomic coordinates from PSNs. This "neural upscaling" procedure exploits the constraints implied by PSNs on possible configurations, as well as differences in the likelihood of observing different configurations with the same PSN. Using a 1 μs atomistic molecular dynamics trajectory of Aβ1-40, we show that neural upscaling is able to effectively recapitulate detailed structural information for intrinsically disordered proteins, being particularly successful in recovering features such as transient secondary structure. These results suggest that scalable network-based models for protein structure and dynamics may be used in settings where atomistic detail is desired, with upscaling employed to impute atomic coordinates from PSNs.</description><subject>Alzheimer's disease</subject><subject>coarse-grained models</subject><subject>Computer applications</subject><subject>Cost control</subject><subject>intrinsically disordered proteins</subject><subject>Intrinsically Disordered Proteins - chemistry</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Macromolecules</subject><subject>Models, Molecular</subject><subject>molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Parameter estimation</subject><subject>Protein structure</subject><subject>protein structure networks</subject><subject>Proteins</subject><subject>Secondary structure</subject><subject>Simulation</subject><subject>Thermodynamics</subject><issn>2218-273X</issn><issn>2218-273X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkdFrFDEQxoMotpx981kWfPHB1c0ku0lehFK0Fo4qasW3kGQn5557mzPJtvjfm_NqvRoGEmY-fky-j5CntHnFmGpe2yFsKKVAhZQPyDEAlTUI9u3hwfuInKS0bsqRpYA9JkeMK845g2Py9RLnaMbqapucGYdpVfkYNtUnTEM_Y73EaxyrjzFkHKbqc46zy3PE6hLzTYg_UpVDdZrDZkh5cP_m6Ql55M2Y8OT2XpCrd2-_nL2vlx_OL85Ol7XjQubaWmtsJ5jggjJLLZet670EpL63LTZWSKWgt8ZJRWmrWGeh541wrQffK8kW5GLP7YNZ620cNib-0sEM-k8jxJU2saw2omZdaxUID7LteIdCGZAchEBmvZcGCuvNnrWd7QZ7h1MuztyD3p9Mw3e9CtdadkoWawvgxS0ghp8zpqyLLw7H0UwY5qShoxyYoMX5BXn-n3Qd5jgVq3YqEC203Q74cq9yMaQU0d8tQxu9y18f5l_kzw4_cCf-mzb7Db_erE0</recordid><startdate>20211130</startdate><enddate>20211130</enddate><creator>Duong, Vy T</creator><creator>Diessner, Elizabeth M</creator><creator>Grazioli, Gianmarc</creator><creator>Martin, Rachel W</creator><creator>Butts, Carter T</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2559-5103</orcidid><orcidid>https://orcid.org/0000-0002-7911-9834</orcidid><orcidid>https://orcid.org/0000-0001-9996-7411</orcidid><orcidid>https://orcid.org/0000-0002-8884-4157</orcidid></search><sort><creationdate>20211130</creationdate><title>Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures</title><author>Duong, Vy T ; Diessner, Elizabeth M ; Grazioli, Gianmarc ; Martin, Rachel W ; Butts, Carter T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-bbbab67374713b1b485cdf82e1fdb5e0b78992dbac89115936b2d407c5f2fd983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Alzheimer's disease</topic><topic>coarse-grained models</topic><topic>Computer applications</topic><topic>Cost control</topic><topic>intrinsically disordered proteins</topic><topic>Intrinsically Disordered Proteins - chemistry</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Macromolecules</topic><topic>Models, Molecular</topic><topic>molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Parameter estimation</topic><topic>Protein structure</topic><topic>protein structure networks</topic><topic>Proteins</topic><topic>Secondary structure</topic><topic>Simulation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Duong, Vy T</creatorcontrib><creatorcontrib>Diessner, Elizabeth M</creatorcontrib><creatorcontrib>Grazioli, Gianmarc</creatorcontrib><creatorcontrib>Martin, Rachel W</creatorcontrib><creatorcontrib>Butts, Carter T</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biomolecules (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Duong, Vy T</au><au>Diessner, Elizabeth M</au><au>Grazioli, Gianmarc</au><au>Martin, Rachel W</au><au>Butts, Carter T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures</atitle><jtitle>Biomolecules (Basel, Switzerland)</jtitle><addtitle>Biomolecules</addtitle><date>2021-11-30</date><risdate>2021</risdate><volume>11</volume><issue>12</issue><spage>1788</spage><pages>1788-</pages><issn>2218-273X</issn><eissn>2218-273X</eissn><abstract>Coarse-graining is a powerful tool for extending the reach of dynamic models of proteins and other biological macromolecules. Topological coarse-graining, in which biomolecules or sets thereof are represented via graph structures, is a particularly useful way of obtaining highly compressed representations of molecular structures, and simulations operating via such representations can achieve substantial computational savings. A drawback of coarse-graining, however, is the loss of atomistic detail-an effect that is especially acute for topological representations such as protein structure networks (PSNs). Here, we introduce an approach based on a combination of machine learning and physically-guided refinement for inferring atomic coordinates from PSNs. This "neural upscaling" procedure exploits the constraints implied by PSNs on possible configurations, as well as differences in the likelihood of observing different configurations with the same PSN. Using a 1 μs atomistic molecular dynamics trajectory of Aβ1-40, we show that neural upscaling is able to effectively recapitulate detailed structural information for intrinsically disordered proteins, being particularly successful in recovering features such as transient secondary structure. These results suggest that scalable network-based models for protein structure and dynamics may be used in settings where atomistic detail is desired, with upscaling employed to impute atomic coordinates from PSNs.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>34944432</pmid><doi>10.3390/biom11121788</doi><orcidid>https://orcid.org/0000-0003-2559-5103</orcidid><orcidid>https://orcid.org/0000-0002-7911-9834</orcidid><orcidid>https://orcid.org/0000-0001-9996-7411</orcidid><orcidid>https://orcid.org/0000-0002-8884-4157</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2218-273X |
ispartof | Biomolecules (Basel, Switzerland), 2021-11, Vol.11 (12), p.1788 |
issn | 2218-273X 2218-273X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_365b927f285646e79a284277e3bff8a2 |
source | Open Access: PubMed Central; ProQuest - Publicly Available Content Database; Coronavirus Research Database |
subjects | Alzheimer's disease coarse-grained models Computer applications Cost control intrinsically disordered proteins Intrinsically Disordered Proteins - chemistry Learning algorithms Machine Learning Macromolecules Models, Molecular molecular dynamics Molecular Dynamics Simulation Neural networks Neural Networks, Computer Parameter estimation Protein structure protein structure networks Proteins Secondary structure Simulation Thermodynamics |
title | Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A33%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Neural%20Upscaling%20from%20Residue-Level%20Protein%20Structure%20Networks%20to%20Atomistic%20Structures&rft.jtitle=Biomolecules%20(Basel,%20Switzerland)&rft.au=Duong,%20Vy%20T&rft.date=2021-11-30&rft.volume=11&rft.issue=12&rft.spage=1788&rft.pages=1788-&rft.issn=2218-273X&rft.eissn=2218-273X&rft_id=info:doi/10.3390/biom11121788&rft_dat=%3Cproquest_doaj_%3E2612752560%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-bbbab67374713b1b485cdf82e1fdb5e0b78992dbac89115936b2d407c5f2fd983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612752560&rft_id=info:pmid/34944432&rfr_iscdi=true |