Loading…
Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia
Agriculture is vital to Sumbawa Regency's economy, with key activities such as rice cultivation, corn production, onion farming, and cattle rearing. This study applies artificial neural networks (ANN) to predict land cover changes, focusing on agricultural land expansion. Using land cover datas...
Saved in:
Published in: | Applied environmental research 2024-09, Vol.46 (3) |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | 3 |
container_start_page | |
container_title | Applied environmental research |
container_volume | 46 |
creator | Muhammad Ramdhan Rudhy Akhwady Taslim Arifin Dini Purbani Yulius Dino G. Pryambodo Rinny Rahmania Olivia Maftukhaturrizqoh Abdul Asyiri Syamsul Hidayat Arya Ningsih Sadad |
description | Agriculture is vital to Sumbawa Regency's economy, with key activities such as rice cultivation, corn production, onion farming, and cattle rearing. This study applies artificial neural networks (ANN) to predict land cover changes, focusing on agricultural land expansion. Using land cover datasets from ESRI, digital elevation model, and topographical maps, we analyzed land cover changes from 2017 to 2023 and generated future projections for 2050 with the MOLUSCE plugin in qGIS. The predictive model achieved an 85% accuracy rate when comparing 2023 actual data with predictions. Results indicate a significant increase in agricultural land cover by 2050. The key finding is that over a long-term period, the simulation of land use and land cover (LULC) change in Sumbawa reveals an increase of crop areas in the Lunyuk and Labangka Districts. This study highlights the effectiveness of ANN in land cover prediction and emphasizes the need for sustainable practices to balance agricultural expansion. AI-driven insights can aid policymakers in opti-mizing resource allocation and ensuring long-term environmental and economic stability in Sumbawa Regency. Future research should refine models and incorporate additional factors for improved accuracy. |
format | article |
fullrecord | <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3670866d391641a085aab00a6f2c1689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3670866d391641a085aab00a6f2c1689</doaj_id><sourcerecordid>oai_doaj_org_article_3670866d391641a085aab00a6f2c1689</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_3670866d391641a085aab00a6f2c16893</originalsourceid><addsrcrecordid>eNqtjNFKwzAUQIMgOOb-4X6Ag5vWpumzTBwMEd3Qt3Db3Ja7dYkkHWN_7xA_wacDh8O5UbOisPUS6-rrTi1y3iOitoWusJmpz12WMMArnxKNV0znmA4Z-pjg45QnkkDtyLCh4GGXGd4Se-kmiQEkXJNjS2eCdx44dJcHWAcfA2ehe3Xb05h58ce5Wj-vtk8vSx9p776THCldXCRxvyKmwVGapBvZlaZGa4wvG20eNaGtiFpEMn3RaWOb8j9fP9XJWc0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia</title><source>DOAJ Directory of Open Access Journals</source><creator>Muhammad Ramdhan ; Rudhy Akhwady ; Taslim Arifin ; Dini Purbani ; Yulius ; Dino G. Pryambodo ; Rinny Rahmania ; Olivia Maftukhaturrizqoh ; Abdul Asyiri ; Syamsul Hidayat ; Arya Ningsih ; Sadad</creator><creatorcontrib>Muhammad Ramdhan ; Rudhy Akhwady ; Taslim Arifin ; Dini Purbani ; Yulius ; Dino G. Pryambodo ; Rinny Rahmania ; Olivia Maftukhaturrizqoh ; Abdul Asyiri ; Syamsul Hidayat ; Arya Ningsih ; Sadad</creatorcontrib><description>Agriculture is vital to Sumbawa Regency's economy, with key activities such as rice cultivation, corn production, onion farming, and cattle rearing. This study applies artificial neural networks (ANN) to predict land cover changes, focusing on agricultural land expansion. Using land cover datasets from ESRI, digital elevation model, and topographical maps, we analyzed land cover changes from 2017 to 2023 and generated future projections for 2050 with the MOLUSCE plugin in qGIS. The predictive model achieved an 85% accuracy rate when comparing 2023 actual data with predictions. Results indicate a significant increase in agricultural land cover by 2050. The key finding is that over a long-term period, the simulation of land use and land cover (LULC) change in Sumbawa reveals an increase of crop areas in the Lunyuk and Labangka Districts. This study highlights the effectiveness of ANN in land cover prediction and emphasizes the need for sustainable practices to balance agricultural expansion. AI-driven insights can aid policymakers in opti-mizing resource allocation and ensuring long-term environmental and economic stability in Sumbawa Regency. Future research should refine models and incorporate additional factors for improved accuracy.</description><identifier>EISSN: 2287-075X</identifier><language>eng</language><publisher>Environmental Research Institute, Chulalongkorn University</publisher><subject>Artificial neural network ; Land cover change ; MOLUSCE ; Sumbawa regency ; Sustainable land management</subject><ispartof>Applied environmental research, 2024-09, Vol.46 (3)</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2096</link.rule.ids></links><search><creatorcontrib>Muhammad Ramdhan</creatorcontrib><creatorcontrib>Rudhy Akhwady</creatorcontrib><creatorcontrib>Taslim Arifin</creatorcontrib><creatorcontrib>Dini Purbani</creatorcontrib><creatorcontrib>Yulius</creatorcontrib><creatorcontrib>Dino G. Pryambodo</creatorcontrib><creatorcontrib>Rinny Rahmania</creatorcontrib><creatorcontrib>Olivia Maftukhaturrizqoh</creatorcontrib><creatorcontrib>Abdul Asyiri</creatorcontrib><creatorcontrib>Syamsul Hidayat</creatorcontrib><creatorcontrib>Arya Ningsih</creatorcontrib><creatorcontrib>Sadad</creatorcontrib><title>Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia</title><title>Applied environmental research</title><description>Agriculture is vital to Sumbawa Regency's economy, with key activities such as rice cultivation, corn production, onion farming, and cattle rearing. This study applies artificial neural networks (ANN) to predict land cover changes, focusing on agricultural land expansion. Using land cover datasets from ESRI, digital elevation model, and topographical maps, we analyzed land cover changes from 2017 to 2023 and generated future projections for 2050 with the MOLUSCE plugin in qGIS. The predictive model achieved an 85% accuracy rate when comparing 2023 actual data with predictions. Results indicate a significant increase in agricultural land cover by 2050. The key finding is that over a long-term period, the simulation of land use and land cover (LULC) change in Sumbawa reveals an increase of crop areas in the Lunyuk and Labangka Districts. This study highlights the effectiveness of ANN in land cover prediction and emphasizes the need for sustainable practices to balance agricultural expansion. AI-driven insights can aid policymakers in opti-mizing resource allocation and ensuring long-term environmental and economic stability in Sumbawa Regency. Future research should refine models and incorporate additional factors for improved accuracy.</description><subject>Artificial neural network</subject><subject>Land cover change</subject><subject>MOLUSCE</subject><subject>Sumbawa regency</subject><subject>Sustainable land management</subject><issn>2287-075X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtjNFKwzAUQIMgOOb-4X6Ag5vWpumzTBwMEd3Qt3Db3Ja7dYkkHWN_7xA_wacDh8O5UbOisPUS6-rrTi1y3iOitoWusJmpz12WMMArnxKNV0znmA4Z-pjg45QnkkDtyLCh4GGXGd4Se-kmiQEkXJNjS2eCdx44dJcHWAcfA2ehe3Xb05h58ce5Wj-vtk8vSx9p776THCldXCRxvyKmwVGapBvZlaZGa4wvG20eNaGtiFpEMn3RaWOb8j9fP9XJWc0</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Muhammad Ramdhan</creator><creator>Rudhy Akhwady</creator><creator>Taslim Arifin</creator><creator>Dini Purbani</creator><creator>Yulius</creator><creator>Dino G. Pryambodo</creator><creator>Rinny Rahmania</creator><creator>Olivia Maftukhaturrizqoh</creator><creator>Abdul Asyiri</creator><creator>Syamsul Hidayat</creator><creator>Arya Ningsih</creator><creator>Sadad</creator><general>Environmental Research Institute, Chulalongkorn University</general><scope>DOA</scope></search><sort><creationdate>20240901</creationdate><title>Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia</title><author>Muhammad Ramdhan ; Rudhy Akhwady ; Taslim Arifin ; Dini Purbani ; Yulius ; Dino G. Pryambodo ; Rinny Rahmania ; Olivia Maftukhaturrizqoh ; Abdul Asyiri ; Syamsul Hidayat ; Arya Ningsih ; Sadad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_3670866d391641a085aab00a6f2c16893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural network</topic><topic>Land cover change</topic><topic>MOLUSCE</topic><topic>Sumbawa regency</topic><topic>Sustainable land management</topic><toplevel>online_resources</toplevel><creatorcontrib>Muhammad Ramdhan</creatorcontrib><creatorcontrib>Rudhy Akhwady</creatorcontrib><creatorcontrib>Taslim Arifin</creatorcontrib><creatorcontrib>Dini Purbani</creatorcontrib><creatorcontrib>Yulius</creatorcontrib><creatorcontrib>Dino G. Pryambodo</creatorcontrib><creatorcontrib>Rinny Rahmania</creatorcontrib><creatorcontrib>Olivia Maftukhaturrizqoh</creatorcontrib><creatorcontrib>Abdul Asyiri</creatorcontrib><creatorcontrib>Syamsul Hidayat</creatorcontrib><creatorcontrib>Arya Ningsih</creatorcontrib><creatorcontrib>Sadad</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhammad Ramdhan</au><au>Rudhy Akhwady</au><au>Taslim Arifin</au><au>Dini Purbani</au><au>Yulius</au><au>Dino G. Pryambodo</au><au>Rinny Rahmania</au><au>Olivia Maftukhaturrizqoh</au><au>Abdul Asyiri</au><au>Syamsul Hidayat</au><au>Arya Ningsih</au><au>Sadad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia</atitle><jtitle>Applied environmental research</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>46</volume><issue>3</issue><eissn>2287-075X</eissn><abstract>Agriculture is vital to Sumbawa Regency's economy, with key activities such as rice cultivation, corn production, onion farming, and cattle rearing. This study applies artificial neural networks (ANN) to predict land cover changes, focusing on agricultural land expansion. Using land cover datasets from ESRI, digital elevation model, and topographical maps, we analyzed land cover changes from 2017 to 2023 and generated future projections for 2050 with the MOLUSCE plugin in qGIS. The predictive model achieved an 85% accuracy rate when comparing 2023 actual data with predictions. Results indicate a significant increase in agricultural land cover by 2050. The key finding is that over a long-term period, the simulation of land use and land cover (LULC) change in Sumbawa reveals an increase of crop areas in the Lunyuk and Labangka Districts. This study highlights the effectiveness of ANN in land cover prediction and emphasizes the need for sustainable practices to balance agricultural expansion. AI-driven insights can aid policymakers in opti-mizing resource allocation and ensuring long-term environmental and economic stability in Sumbawa Regency. Future research should refine models and incorporate additional factors for improved accuracy.</abstract><pub>Environmental Research Institute, Chulalongkorn University</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2287-075X |
ispartof | Applied environmental research, 2024-09, Vol.46 (3) |
issn | 2287-075X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3670866d391641a085aab00a6f2c1689 |
source | DOAJ Directory of Open Access Journals |
subjects | Artificial neural network Land cover change MOLUSCE Sumbawa regency Sustainable land management |
title | Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Neural%20Networks%20for%20Sustainable%20Land%20Use%20Prediction%20in%20Sumbawa%20Regency,%20Indonesia&rft.jtitle=Applied%20environmental%20research&rft.au=Muhammad%20Ramdhan&rft.date=2024-09-01&rft.volume=46&rft.issue=3&rft.eissn=2287-075X&rft_id=info:doi/&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_3670866d391641a085aab00a6f2c1689%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_3670866d391641a085aab00a6f2c16893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |