Loading…

Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia

Agriculture is vital to Sumbawa Regency's economy, with key activities such as rice cultivation, corn production, onion farming, and cattle rearing. This study applies artificial neural networks (ANN) to predict land cover changes, focusing on agricultural land expansion. Using land cover datas...

Full description

Saved in:
Bibliographic Details
Published in:Applied environmental research 2024-09, Vol.46 (3)
Main Authors: Muhammad Ramdhan, Rudhy Akhwady, Taslim Arifin, Dini Purbani, Yulius, Dino G. Pryambodo, Rinny Rahmania, Olivia Maftukhaturrizqoh, Abdul Asyiri, Syamsul Hidayat, Arya Ningsih, Sadad
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 3
container_start_page
container_title Applied environmental research
container_volume 46
creator Muhammad Ramdhan
Rudhy Akhwady
Taslim Arifin
Dini Purbani
Yulius
Dino G. Pryambodo
Rinny Rahmania
Olivia Maftukhaturrizqoh
Abdul Asyiri
Syamsul Hidayat
Arya Ningsih
Sadad
description Agriculture is vital to Sumbawa Regency's economy, with key activities such as rice cultivation, corn production, onion farming, and cattle rearing. This study applies artificial neural networks (ANN) to predict land cover changes, focusing on agricultural land expansion. Using land cover datasets from ESRI, digital elevation model, and topographical maps, we analyzed land cover changes from 2017 to 2023 and generated future projections for 2050 with the MOLUSCE plugin in qGIS. The predictive model achieved an 85% accuracy rate when comparing 2023 actual data with predictions. Results indicate a significant increase in agricultural land cover by 2050. The key finding is that over a long-term period, the simulation of land use and land cover (LULC) change in Sumbawa reveals an increase of crop areas in the Lunyuk and Labangka Districts. This study highlights the effectiveness of ANN in land cover prediction and emphasizes the need for sustainable practices to balance agricultural expansion. AI-driven insights can aid policymakers in opti-mizing resource allocation and ensuring long-term environmental and economic stability in Sumbawa Regency. Future research should refine models and incorporate additional factors for improved accuracy.
format article
fullrecord <record><control><sourceid>doaj</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3670866d391641a085aab00a6f2c1689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3670866d391641a085aab00a6f2c1689</doaj_id><sourcerecordid>oai_doaj_org_article_3670866d391641a085aab00a6f2c1689</sourcerecordid><originalsourceid>FETCH-doaj_primary_oai_doaj_org_article_3670866d391641a085aab00a6f2c16893</originalsourceid><addsrcrecordid>eNqtjNFKwzAUQIMgOOb-4X6Ag5vWpumzTBwMEd3Qt3Db3Ja7dYkkHWN_7xA_wacDh8O5UbOisPUS6-rrTi1y3iOitoWusJmpz12WMMArnxKNV0znmA4Z-pjg45QnkkDtyLCh4GGXGd4Se-kmiQEkXJNjS2eCdx44dJcHWAcfA2ehe3Xb05h58ce5Wj-vtk8vSx9p776THCldXCRxvyKmwVGapBvZlaZGa4wvG20eNaGtiFpEMn3RaWOb8j9fP9XJWc0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia</title><source>DOAJ Directory of Open Access Journals</source><creator>Muhammad Ramdhan ; Rudhy Akhwady ; Taslim Arifin ; Dini Purbani ; Yulius ; Dino G. Pryambodo ; Rinny Rahmania ; Olivia Maftukhaturrizqoh ; Abdul Asyiri ; Syamsul Hidayat ; Arya Ningsih ; Sadad</creator><creatorcontrib>Muhammad Ramdhan ; Rudhy Akhwady ; Taslim Arifin ; Dini Purbani ; Yulius ; Dino G. Pryambodo ; Rinny Rahmania ; Olivia Maftukhaturrizqoh ; Abdul Asyiri ; Syamsul Hidayat ; Arya Ningsih ; Sadad</creatorcontrib><description>Agriculture is vital to Sumbawa Regency's economy, with key activities such as rice cultivation, corn production, onion farming, and cattle rearing. This study applies artificial neural networks (ANN) to predict land cover changes, focusing on agricultural land expansion. Using land cover datasets from ESRI, digital elevation model, and topographical maps, we analyzed land cover changes from 2017 to 2023 and generated future projections for 2050 with the MOLUSCE plugin in qGIS. The predictive model achieved an 85% accuracy rate when comparing 2023 actual data with predictions. Results indicate a significant increase in agricultural land cover by 2050. The key finding is that over a long-term period, the simulation of land use and land cover (LULC) change in Sumbawa reveals an increase of crop areas in the Lunyuk and Labangka Districts. This study highlights the effectiveness of ANN in land cover prediction and emphasizes the need for sustainable practices to balance agricultural expansion. AI-driven insights can aid policymakers in opti-mizing resource allocation and ensuring long-term environmental and economic stability in Sumbawa Regency. Future research should refine models and incorporate additional factors for improved accuracy.</description><identifier>EISSN: 2287-075X</identifier><language>eng</language><publisher>Environmental Research Institute, Chulalongkorn University</publisher><subject>Artificial neural network ; Land cover change ; MOLUSCE ; Sumbawa regency ; Sustainable land management</subject><ispartof>Applied environmental research, 2024-09, Vol.46 (3)</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2096</link.rule.ids></links><search><creatorcontrib>Muhammad Ramdhan</creatorcontrib><creatorcontrib>Rudhy Akhwady</creatorcontrib><creatorcontrib>Taslim Arifin</creatorcontrib><creatorcontrib>Dini Purbani</creatorcontrib><creatorcontrib>Yulius</creatorcontrib><creatorcontrib>Dino G. Pryambodo</creatorcontrib><creatorcontrib>Rinny Rahmania</creatorcontrib><creatorcontrib>Olivia Maftukhaturrizqoh</creatorcontrib><creatorcontrib>Abdul Asyiri</creatorcontrib><creatorcontrib>Syamsul Hidayat</creatorcontrib><creatorcontrib>Arya Ningsih</creatorcontrib><creatorcontrib>Sadad</creatorcontrib><title>Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia</title><title>Applied environmental research</title><description>Agriculture is vital to Sumbawa Regency's economy, with key activities such as rice cultivation, corn production, onion farming, and cattle rearing. This study applies artificial neural networks (ANN) to predict land cover changes, focusing on agricultural land expansion. Using land cover datasets from ESRI, digital elevation model, and topographical maps, we analyzed land cover changes from 2017 to 2023 and generated future projections for 2050 with the MOLUSCE plugin in qGIS. The predictive model achieved an 85% accuracy rate when comparing 2023 actual data with predictions. Results indicate a significant increase in agricultural land cover by 2050. The key finding is that over a long-term period, the simulation of land use and land cover (LULC) change in Sumbawa reveals an increase of crop areas in the Lunyuk and Labangka Districts. This study highlights the effectiveness of ANN in land cover prediction and emphasizes the need for sustainable practices to balance agricultural expansion. AI-driven insights can aid policymakers in opti-mizing resource allocation and ensuring long-term environmental and economic stability in Sumbawa Regency. Future research should refine models and incorporate additional factors for improved accuracy.</description><subject>Artificial neural network</subject><subject>Land cover change</subject><subject>MOLUSCE</subject><subject>Sumbawa regency</subject><subject>Sustainable land management</subject><issn>2287-075X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqtjNFKwzAUQIMgOOb-4X6Ag5vWpumzTBwMEd3Qt3Db3Ja7dYkkHWN_7xA_wacDh8O5UbOisPUS6-rrTi1y3iOitoWusJmpz12WMMArnxKNV0znmA4Z-pjg45QnkkDtyLCh4GGXGd4Se-kmiQEkXJNjS2eCdx44dJcHWAcfA2ehe3Xb05h58ce5Wj-vtk8vSx9p776THCldXCRxvyKmwVGapBvZlaZGa4wvG20eNaGtiFpEMn3RaWOb8j9fP9XJWc0</recordid><startdate>20240901</startdate><enddate>20240901</enddate><creator>Muhammad Ramdhan</creator><creator>Rudhy Akhwady</creator><creator>Taslim Arifin</creator><creator>Dini Purbani</creator><creator>Yulius</creator><creator>Dino G. Pryambodo</creator><creator>Rinny Rahmania</creator><creator>Olivia Maftukhaturrizqoh</creator><creator>Abdul Asyiri</creator><creator>Syamsul Hidayat</creator><creator>Arya Ningsih</creator><creator>Sadad</creator><general>Environmental Research Institute, Chulalongkorn University</general><scope>DOA</scope></search><sort><creationdate>20240901</creationdate><title>Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia</title><author>Muhammad Ramdhan ; Rudhy Akhwady ; Taslim Arifin ; Dini Purbani ; Yulius ; Dino G. Pryambodo ; Rinny Rahmania ; Olivia Maftukhaturrizqoh ; Abdul Asyiri ; Syamsul Hidayat ; Arya Ningsih ; Sadad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-doaj_primary_oai_doaj_org_article_3670866d391641a085aab00a6f2c16893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural network</topic><topic>Land cover change</topic><topic>MOLUSCE</topic><topic>Sumbawa regency</topic><topic>Sustainable land management</topic><toplevel>online_resources</toplevel><creatorcontrib>Muhammad Ramdhan</creatorcontrib><creatorcontrib>Rudhy Akhwady</creatorcontrib><creatorcontrib>Taslim Arifin</creatorcontrib><creatorcontrib>Dini Purbani</creatorcontrib><creatorcontrib>Yulius</creatorcontrib><creatorcontrib>Dino G. Pryambodo</creatorcontrib><creatorcontrib>Rinny Rahmania</creatorcontrib><creatorcontrib>Olivia Maftukhaturrizqoh</creatorcontrib><creatorcontrib>Abdul Asyiri</creatorcontrib><creatorcontrib>Syamsul Hidayat</creatorcontrib><creatorcontrib>Arya Ningsih</creatorcontrib><creatorcontrib>Sadad</creatorcontrib><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied environmental research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muhammad Ramdhan</au><au>Rudhy Akhwady</au><au>Taslim Arifin</au><au>Dini Purbani</au><au>Yulius</au><au>Dino G. Pryambodo</au><au>Rinny Rahmania</au><au>Olivia Maftukhaturrizqoh</au><au>Abdul Asyiri</au><au>Syamsul Hidayat</au><au>Arya Ningsih</au><au>Sadad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia</atitle><jtitle>Applied environmental research</jtitle><date>2024-09-01</date><risdate>2024</risdate><volume>46</volume><issue>3</issue><eissn>2287-075X</eissn><abstract>Agriculture is vital to Sumbawa Regency's economy, with key activities such as rice cultivation, corn production, onion farming, and cattle rearing. This study applies artificial neural networks (ANN) to predict land cover changes, focusing on agricultural land expansion. Using land cover datasets from ESRI, digital elevation model, and topographical maps, we analyzed land cover changes from 2017 to 2023 and generated future projections for 2050 with the MOLUSCE plugin in qGIS. The predictive model achieved an 85% accuracy rate when comparing 2023 actual data with predictions. Results indicate a significant increase in agricultural land cover by 2050. The key finding is that over a long-term period, the simulation of land use and land cover (LULC) change in Sumbawa reveals an increase of crop areas in the Lunyuk and Labangka Districts. This study highlights the effectiveness of ANN in land cover prediction and emphasizes the need for sustainable practices to balance agricultural expansion. AI-driven insights can aid policymakers in opti-mizing resource allocation and ensuring long-term environmental and economic stability in Sumbawa Regency. Future research should refine models and incorporate additional factors for improved accuracy.</abstract><pub>Environmental Research Institute, Chulalongkorn University</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2287-075X
ispartof Applied environmental research, 2024-09, Vol.46 (3)
issn 2287-075X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3670866d391641a085aab00a6f2c1689
source DOAJ Directory of Open Access Journals
subjects Artificial neural network
Land cover change
MOLUSCE
Sumbawa regency
Sustainable land management
title Using Neural Networks for Sustainable Land Use Prediction in Sumbawa Regency, Indonesia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A15%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Neural%20Networks%20for%20Sustainable%20Land%20Use%20Prediction%20in%20Sumbawa%20Regency,%20Indonesia&rft.jtitle=Applied%20environmental%20research&rft.au=Muhammad%20Ramdhan&rft.date=2024-09-01&rft.volume=46&rft.issue=3&rft.eissn=2287-075X&rft_id=info:doi/&rft_dat=%3Cdoaj%3Eoai_doaj_org_article_3670866d391641a085aab00a6f2c1689%3C/doaj%3E%3Cgrp_id%3Ecdi_FETCH-doaj_primary_oai_doaj_org_article_3670866d391641a085aab00a6f2c16893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true