Loading…

Lessonia-1 SAR time-series for identifying flooded areas

The catastrophic floods that hit Rio Grande do Sul, Brazil, in May 2024 underscored the urgent necessity for sophisticated flood monitoring and management methods. Notably, Synthetic Aperture Radar (SAR) satellite imagery has proven to be an essential resource for detecting flooded regions and evalu...

Full description

Saved in:
Bibliographic Details
Published in:International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2024-11, Vol.XLVIII-3/W3-2024, p.55-62
Main Authors: Lima, Sidney A., Costa, Felipe A. L., Bias, Edilson S., Sano, Edson E.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 62
container_issue
container_start_page 55
container_title International archives of the photogrammetry, remote sensing and spatial information sciences.
container_volume XLVIII-3/W3-2024
creator Lima, Sidney A.
Costa, Felipe A. L.
Bias, Edilson S.
Sano, Edson E.
description The catastrophic floods that hit Rio Grande do Sul, Brazil, in May 2024 underscored the urgent necessity for sophisticated flood monitoring and management methods. Notably, Synthetic Aperture Radar (SAR) satellite imagery has proven to be an essential resource for detecting flooded regions and evaluating the extent of flooding, even in challenging weather conditions. The Lessonia-1 SAR project represents a significant advancement in Brazil’s technological capabilities, particularly in enhancing flood management. By providing continuous and precise imagery monitoring, it plays a crucial role in mitigating flood risks. During heavy rains in the southern Brazilian State of Rio Grande do Sul, the Space Operations Center (COPE) was tasked to acquire imagery from Lessonia-1 SAR to support operations aimed at mitigating the impact on residents' lives. The purpose of this study is to assess the feasibility of utilizing Lessonia-1 SAR imagery, operating at X band with VV polarization, using a time-series approach for identifying flooded areas. The results demonstrate that utilizing imagery from October 2022 (before) and May 2024 (after) with normalization between both images enables the identification of flooded areas of interest. Additionally, the study employs false-color composition (R:after, G:before and B:normalization) to visualize the flooding curve in blue.
doi_str_mv 10.5194/isprs-archives-XLVIII-3-W3-2024-55-2024
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_367b970b4d8645c4a2b4487afbf22157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_367b970b4d8645c4a2b4487afbf22157</doaj_id><sourcerecordid>3123197605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1585-94aecfa1514dda0ff47fa3194f17e5d83f9c8a5f53cffb10a11d1750225658b63</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRsNT-hwWfY3ObvTyWonVhQfBW38LsJqkpbVOTVvDfu91V8ekMw-HMYb4kmTJ6A6yUUxf3IRIM7bv7NJG81a9VVRFBloJwyiUB6PUsGfHOTkoq5Pm_-TKZxLimlDKZZUBhlBS1idHvHBKWPs0e04PbGhJNcCam1ofUabM7OPvldqvUbrzXRqcYDMar5MLiJprJj46Tl7vb5_k9qR8W1XxWk5ZBAaSUaFqLDJjUGqm1Mrcouj6W5QZ0IWzZFggWRGttwygyplkOlHPIoGgyMU6qIVd7XKt9cFsMX8qjU_3Ch5XCcHDtxiiR5U2Z00bqIpPQSuSNlEWOtrGcM8i7rOshax_8x9HEg1r7Y9h19ZVgvGuVZxQ612JwtcHHGIz9u8qoOlFQPQX1S0ENFJRQS6FO31cAvYpv2rmAkg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123197605</pqid></control><display><type>article</type><title>Lessonia-1 SAR time-series for identifying flooded areas</title><source>Publicly Available Content Database</source><source>EZB Free E-Journals</source><creator>Lima, Sidney A. ; Costa, Felipe A. L. ; Bias, Edilson S. ; Sano, Edson E.</creator><creatorcontrib>Lima, Sidney A. ; Costa, Felipe A. L. ; Bias, Edilson S. ; Sano, Edson E.</creatorcontrib><description>The catastrophic floods that hit Rio Grande do Sul, Brazil, in May 2024 underscored the urgent necessity for sophisticated flood monitoring and management methods. Notably, Synthetic Aperture Radar (SAR) satellite imagery has proven to be an essential resource for detecting flooded regions and evaluating the extent of flooding, even in challenging weather conditions. The Lessonia-1 SAR project represents a significant advancement in Brazil’s technological capabilities, particularly in enhancing flood management. By providing continuous and precise imagery monitoring, it plays a crucial role in mitigating flood risks. During heavy rains in the southern Brazilian State of Rio Grande do Sul, the Space Operations Center (COPE) was tasked to acquire imagery from Lessonia-1 SAR to support operations aimed at mitigating the impact on residents' lives. The purpose of this study is to assess the feasibility of utilizing Lessonia-1 SAR imagery, operating at X band with VV polarization, using a time-series approach for identifying flooded areas. The results demonstrate that utilizing imagery from October 2022 (before) and May 2024 (after) with normalization between both images enables the identification of flooded areas of interest. Additionally, the study employs false-color composition (R:after, G:before and B:normalization) to visualize the flooding curve in blue.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprs-archives-XLVIII-3-W3-2024-55-2024</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Environmental risk ; Feasibility studies ; Flood control ; Flood management ; Flooding ; Floods ; Image acquisition ; Image enhancement ; Lessonia ; Management methods ; Monitoring ; Project management ; Radar imaging ; SAR (radar) ; Satellite imagery ; Superhigh frequencies ; Synthetic aperture radar ; Time series ; Weather</subject><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2024-11, Vol.XLVIII-3/W3-2024, p.55-62</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3123197605?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Lima, Sidney A.</creatorcontrib><creatorcontrib>Costa, Felipe A. L.</creatorcontrib><creatorcontrib>Bias, Edilson S.</creatorcontrib><creatorcontrib>Sano, Edson E.</creatorcontrib><title>Lessonia-1 SAR time-series for identifying flooded areas</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>The catastrophic floods that hit Rio Grande do Sul, Brazil, in May 2024 underscored the urgent necessity for sophisticated flood monitoring and management methods. Notably, Synthetic Aperture Radar (SAR) satellite imagery has proven to be an essential resource for detecting flooded regions and evaluating the extent of flooding, even in challenging weather conditions. The Lessonia-1 SAR project represents a significant advancement in Brazil’s technological capabilities, particularly in enhancing flood management. By providing continuous and precise imagery monitoring, it plays a crucial role in mitigating flood risks. During heavy rains in the southern Brazilian State of Rio Grande do Sul, the Space Operations Center (COPE) was tasked to acquire imagery from Lessonia-1 SAR to support operations aimed at mitigating the impact on residents' lives. The purpose of this study is to assess the feasibility of utilizing Lessonia-1 SAR imagery, operating at X band with VV polarization, using a time-series approach for identifying flooded areas. The results demonstrate that utilizing imagery from October 2022 (before) and May 2024 (after) with normalization between both images enables the identification of flooded areas of interest. Additionally, the study employs false-color composition (R:after, G:before and B:normalization) to visualize the flooding curve in blue.</description><subject>Environmental risk</subject><subject>Feasibility studies</subject><subject>Flood control</subject><subject>Flood management</subject><subject>Flooding</subject><subject>Floods</subject><subject>Image acquisition</subject><subject>Image enhancement</subject><subject>Lessonia</subject><subject>Management methods</subject><subject>Monitoring</subject><subject>Project management</subject><subject>Radar imaging</subject><subject>SAR (radar)</subject><subject>Satellite imagery</subject><subject>Superhigh frequencies</subject><subject>Synthetic aperture radar</subject><subject>Time series</subject><subject>Weather</subject><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRsNT-hwWfY3ObvTyWonVhQfBW38LsJqkpbVOTVvDfu91V8ekMw-HMYb4kmTJ6A6yUUxf3IRIM7bv7NJG81a9VVRFBloJwyiUB6PUsGfHOTkoq5Pm_-TKZxLimlDKZZUBhlBS1idHvHBKWPs0e04PbGhJNcCam1ofUabM7OPvldqvUbrzXRqcYDMar5MLiJprJj46Tl7vb5_k9qR8W1XxWk5ZBAaSUaFqLDJjUGqm1Mrcouj6W5QZ0IWzZFggWRGttwygyplkOlHPIoGgyMU6qIVd7XKt9cFsMX8qjU_3Ch5XCcHDtxiiR5U2Z00bqIpPQSuSNlEWOtrGcM8i7rOshax_8x9HEg1r7Y9h19ZVgvGuVZxQ612JwtcHHGIz9u8qoOlFQPQX1S0ENFJRQS6FO31cAvYpv2rmAkg</recordid><startdate>20241102</startdate><enddate>20241102</enddate><creator>Lima, Sidney A.</creator><creator>Costa, Felipe A. L.</creator><creator>Bias, Edilson S.</creator><creator>Sano, Edson E.</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20241102</creationdate><title>Lessonia-1 SAR time-series for identifying flooded areas</title><author>Lima, Sidney A. ; Costa, Felipe A. L. ; Bias, Edilson S. ; Sano, Edson E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1585-94aecfa1514dda0ff47fa3194f17e5d83f9c8a5f53cffb10a11d1750225658b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Environmental risk</topic><topic>Feasibility studies</topic><topic>Flood control</topic><topic>Flood management</topic><topic>Flooding</topic><topic>Floods</topic><topic>Image acquisition</topic><topic>Image enhancement</topic><topic>Lessonia</topic><topic>Management methods</topic><topic>Monitoring</topic><topic>Project management</topic><topic>Radar imaging</topic><topic>SAR (radar)</topic><topic>Satellite imagery</topic><topic>Superhigh frequencies</topic><topic>Synthetic aperture radar</topic><topic>Time series</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, Sidney A.</creatorcontrib><creatorcontrib>Costa, Felipe A. L.</creatorcontrib><creatorcontrib>Bias, Edilson S.</creatorcontrib><creatorcontrib>Sano, Edson E.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Sidney A.</au><au>Costa, Felipe A. L.</au><au>Bias, Edilson S.</au><au>Sano, Edson E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lessonia-1 SAR time-series for identifying flooded areas</atitle><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle><date>2024-11-02</date><risdate>2024</risdate><volume>XLVIII-3/W3-2024</volume><spage>55</spage><epage>62</epage><pages>55-62</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>The catastrophic floods that hit Rio Grande do Sul, Brazil, in May 2024 underscored the urgent necessity for sophisticated flood monitoring and management methods. Notably, Synthetic Aperture Radar (SAR) satellite imagery has proven to be an essential resource for detecting flooded regions and evaluating the extent of flooding, even in challenging weather conditions. The Lessonia-1 SAR project represents a significant advancement in Brazil’s technological capabilities, particularly in enhancing flood management. By providing continuous and precise imagery monitoring, it plays a crucial role in mitigating flood risks. During heavy rains in the southern Brazilian State of Rio Grande do Sul, the Space Operations Center (COPE) was tasked to acquire imagery from Lessonia-1 SAR to support operations aimed at mitigating the impact on residents' lives. The purpose of this study is to assess the feasibility of utilizing Lessonia-1 SAR imagery, operating at X band with VV polarization, using a time-series approach for identifying flooded areas. The results demonstrate that utilizing imagery from October 2022 (before) and May 2024 (after) with normalization between both images enables the identification of flooded areas of interest. Additionally, the study employs false-color composition (R:after, G:before and B:normalization) to visualize the flooding curve in blue.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-archives-XLVIII-3-W3-2024-55-2024</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2194-9034
ispartof International archives of the photogrammetry, remote sensing and spatial information sciences., 2024-11, Vol.XLVIII-3/W3-2024, p.55-62
issn 2194-9034
1682-1750
2194-9034
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_367b970b4d8645c4a2b4487afbf22157
source Publicly Available Content Database; EZB Free E-Journals
subjects Environmental risk
Feasibility studies
Flood control
Flood management
Flooding
Floods
Image acquisition
Image enhancement
Lessonia
Management methods
Monitoring
Project management
Radar imaging
SAR (radar)
Satellite imagery
Superhigh frequencies
Synthetic aperture radar
Time series
Weather
title Lessonia-1 SAR time-series for identifying flooded areas
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lessonia-1%20SAR%20time-series%20for%20identifying%20flooded%20areas&rft.jtitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Lima,%20Sidney%20A.&rft.date=2024-11-02&rft.volume=XLVIII-3/W3-2024&rft.spage=55&rft.epage=62&rft.pages=55-62&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprs-archives-XLVIII-3-W3-2024-55-2024&rft_dat=%3Cproquest_doaj_%3E3123197605%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1585-94aecfa1514dda0ff47fa3194f17e5d83f9c8a5f53cffb10a11d1750225658b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123197605&rft_id=info:pmid/&rfr_iscdi=true