Loading…
Lessonia-1 SAR time-series for identifying flooded areas
The catastrophic floods that hit Rio Grande do Sul, Brazil, in May 2024 underscored the urgent necessity for sophisticated flood monitoring and management methods. Notably, Synthetic Aperture Radar (SAR) satellite imagery has proven to be an essential resource for detecting flooded regions and evalu...
Saved in:
Published in: | International archives of the photogrammetry, remote sensing and spatial information sciences. remote sensing and spatial information sciences., 2024-11, Vol.XLVIII-3/W3-2024, p.55-62 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 62 |
container_issue | |
container_start_page | 55 |
container_title | International archives of the photogrammetry, remote sensing and spatial information sciences. |
container_volume | XLVIII-3/W3-2024 |
creator | Lima, Sidney A. Costa, Felipe A. L. Bias, Edilson S. Sano, Edson E. |
description | The catastrophic floods that hit Rio Grande do Sul, Brazil, in May 2024 underscored the urgent necessity for sophisticated flood monitoring and management methods. Notably, Synthetic Aperture Radar (SAR) satellite imagery has proven to be an essential resource for detecting flooded regions and evaluating the extent of flooding, even in challenging weather conditions. The Lessonia-1 SAR project represents a significant advancement in Brazil’s technological capabilities, particularly in enhancing flood management. By providing continuous and precise imagery monitoring, it plays a crucial role in mitigating flood risks. During heavy rains in the southern Brazilian State of Rio Grande do Sul, the Space Operations Center (COPE) was tasked to acquire imagery from Lessonia-1 SAR to support operations aimed at mitigating the impact on residents' lives. The purpose of this study is to assess the feasibility of utilizing Lessonia-1 SAR imagery, operating at X band with VV polarization, using a time-series approach for identifying flooded areas. The results demonstrate that utilizing imagery from October 2022 (before) and May 2024 (after) with normalization between both images enables the identification of flooded areas of interest. Additionally, the study employs false-color composition (R:after, G:before and B:normalization) to visualize the flooding curve in blue. |
doi_str_mv | 10.5194/isprs-archives-XLVIII-3-W3-2024-55-2024 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_367b970b4d8645c4a2b4487afbf22157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_367b970b4d8645c4a2b4487afbf22157</doaj_id><sourcerecordid>3123197605</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1585-94aecfa1514dda0ff47fa3194f17e5d83f9c8a5f53cffb10a11d1750225658b63</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRsNT-hwWfY3ObvTyWonVhQfBW38LsJqkpbVOTVvDfu91V8ekMw-HMYb4kmTJ6A6yUUxf3IRIM7bv7NJG81a9VVRFBloJwyiUB6PUsGfHOTkoq5Pm_-TKZxLimlDKZZUBhlBS1idHvHBKWPs0e04PbGhJNcCam1ofUabM7OPvldqvUbrzXRqcYDMar5MLiJprJj46Tl7vb5_k9qR8W1XxWk5ZBAaSUaFqLDJjUGqm1Mrcouj6W5QZ0IWzZFggWRGttwygyplkOlHPIoGgyMU6qIVd7XKt9cFsMX8qjU_3Ch5XCcHDtxiiR5U2Z00bqIpPQSuSNlEWOtrGcM8i7rOshax_8x9HEg1r7Y9h19ZVgvGuVZxQ612JwtcHHGIz9u8qoOlFQPQX1S0ENFJRQS6FO31cAvYpv2rmAkg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3123197605</pqid></control><display><type>article</type><title>Lessonia-1 SAR time-series for identifying flooded areas</title><source>Publicly Available Content Database</source><source>EZB Free E-Journals</source><creator>Lima, Sidney A. ; Costa, Felipe A. L. ; Bias, Edilson S. ; Sano, Edson E.</creator><creatorcontrib>Lima, Sidney A. ; Costa, Felipe A. L. ; Bias, Edilson S. ; Sano, Edson E.</creatorcontrib><description>The catastrophic floods that hit Rio Grande do Sul, Brazil, in May 2024 underscored the urgent necessity for sophisticated flood monitoring and management methods. Notably, Synthetic Aperture Radar (SAR) satellite imagery has proven to be an essential resource for detecting flooded regions and evaluating the extent of flooding, even in challenging weather conditions. The Lessonia-1 SAR project represents a significant advancement in Brazil’s technological capabilities, particularly in enhancing flood management. By providing continuous and precise imagery monitoring, it plays a crucial role in mitigating flood risks. During heavy rains in the southern Brazilian State of Rio Grande do Sul, the Space Operations Center (COPE) was tasked to acquire imagery from Lessonia-1 SAR to support operations aimed at mitigating the impact on residents' lives. The purpose of this study is to assess the feasibility of utilizing Lessonia-1 SAR imagery, operating at X band with VV polarization, using a time-series approach for identifying flooded areas. The results demonstrate that utilizing imagery from October 2022 (before) and May 2024 (after) with normalization between both images enables the identification of flooded areas of interest. Additionally, the study employs false-color composition (R:after, G:before and B:normalization) to visualize the flooding curve in blue.</description><identifier>ISSN: 2194-9034</identifier><identifier>ISSN: 1682-1750</identifier><identifier>EISSN: 2194-9034</identifier><identifier>DOI: 10.5194/isprs-archives-XLVIII-3-W3-2024-55-2024</identifier><language>eng</language><publisher>Gottingen: Copernicus GmbH</publisher><subject>Environmental risk ; Feasibility studies ; Flood control ; Flood management ; Flooding ; Floods ; Image acquisition ; Image enhancement ; Lessonia ; Management methods ; Monitoring ; Project management ; Radar imaging ; SAR (radar) ; Satellite imagery ; Superhigh frequencies ; Synthetic aperture radar ; Time series ; Weather</subject><ispartof>International archives of the photogrammetry, remote sensing and spatial information sciences., 2024-11, Vol.XLVIII-3/W3-2024, p.55-62</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/3123197605?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Lima, Sidney A.</creatorcontrib><creatorcontrib>Costa, Felipe A. L.</creatorcontrib><creatorcontrib>Bias, Edilson S.</creatorcontrib><creatorcontrib>Sano, Edson E.</creatorcontrib><title>Lessonia-1 SAR time-series for identifying flooded areas</title><title>International archives of the photogrammetry, remote sensing and spatial information sciences.</title><description>The catastrophic floods that hit Rio Grande do Sul, Brazil, in May 2024 underscored the urgent necessity for sophisticated flood monitoring and management methods. Notably, Synthetic Aperture Radar (SAR) satellite imagery has proven to be an essential resource for detecting flooded regions and evaluating the extent of flooding, even in challenging weather conditions. The Lessonia-1 SAR project represents a significant advancement in Brazil’s technological capabilities, particularly in enhancing flood management. By providing continuous and precise imagery monitoring, it plays a crucial role in mitigating flood risks. During heavy rains in the southern Brazilian State of Rio Grande do Sul, the Space Operations Center (COPE) was tasked to acquire imagery from Lessonia-1 SAR to support operations aimed at mitigating the impact on residents' lives. The purpose of this study is to assess the feasibility of utilizing Lessonia-1 SAR imagery, operating at X band with VV polarization, using a time-series approach for identifying flooded areas. The results demonstrate that utilizing imagery from October 2022 (before) and May 2024 (after) with normalization between both images enables the identification of flooded areas of interest. Additionally, the study employs false-color composition (R:after, G:before and B:normalization) to visualize the flooding curve in blue.</description><subject>Environmental risk</subject><subject>Feasibility studies</subject><subject>Flood control</subject><subject>Flood management</subject><subject>Flooding</subject><subject>Floods</subject><subject>Image acquisition</subject><subject>Image enhancement</subject><subject>Lessonia</subject><subject>Management methods</subject><subject>Monitoring</subject><subject>Project management</subject><subject>Radar imaging</subject><subject>SAR (radar)</subject><subject>Satellite imagery</subject><subject>Superhigh frequencies</subject><subject>Synthetic aperture radar</subject><subject>Time series</subject><subject>Weather</subject><issn>2194-9034</issn><issn>1682-1750</issn><issn>2194-9034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRsNT-hwWfY3ObvTyWonVhQfBW38LsJqkpbVOTVvDfu91V8ekMw-HMYb4kmTJ6A6yUUxf3IRIM7bv7NJG81a9VVRFBloJwyiUB6PUsGfHOTkoq5Pm_-TKZxLimlDKZZUBhlBS1idHvHBKWPs0e04PbGhJNcCam1ofUabM7OPvldqvUbrzXRqcYDMar5MLiJprJj46Tl7vb5_k9qR8W1XxWk5ZBAaSUaFqLDJjUGqm1Mrcouj6W5QZ0IWzZFggWRGttwygyplkOlHPIoGgyMU6qIVd7XKt9cFsMX8qjU_3Ch5XCcHDtxiiR5U2Z00bqIpPQSuSNlEWOtrGcM8i7rOshax_8x9HEg1r7Y9h19ZVgvGuVZxQ612JwtcHHGIz9u8qoOlFQPQX1S0ENFJRQS6FO31cAvYpv2rmAkg</recordid><startdate>20241102</startdate><enddate>20241102</enddate><creator>Lima, Sidney A.</creator><creator>Costa, Felipe A. L.</creator><creator>Bias, Edilson S.</creator><creator>Sano, Edson E.</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>DOA</scope></search><sort><creationdate>20241102</creationdate><title>Lessonia-1 SAR time-series for identifying flooded areas</title><author>Lima, Sidney A. ; Costa, Felipe A. L. ; Bias, Edilson S. ; Sano, Edson E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1585-94aecfa1514dda0ff47fa3194f17e5d83f9c8a5f53cffb10a11d1750225658b63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Environmental risk</topic><topic>Feasibility studies</topic><topic>Flood control</topic><topic>Flood management</topic><topic>Flooding</topic><topic>Floods</topic><topic>Image acquisition</topic><topic>Image enhancement</topic><topic>Lessonia</topic><topic>Management methods</topic><topic>Monitoring</topic><topic>Project management</topic><topic>Radar imaging</topic><topic>SAR (radar)</topic><topic>Satellite imagery</topic><topic>Superhigh frequencies</topic><topic>Synthetic aperture radar</topic><topic>Time series</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lima, Sidney A.</creatorcontrib><creatorcontrib>Costa, Felipe A. L.</creatorcontrib><creatorcontrib>Bias, Edilson S.</creatorcontrib><creatorcontrib>Sano, Edson E.</creatorcontrib><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lima, Sidney A.</au><au>Costa, Felipe A. L.</au><au>Bias, Edilson S.</au><au>Sano, Edson E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lessonia-1 SAR time-series for identifying flooded areas</atitle><jtitle>International archives of the photogrammetry, remote sensing and spatial information sciences.</jtitle><date>2024-11-02</date><risdate>2024</risdate><volume>XLVIII-3/W3-2024</volume><spage>55</spage><epage>62</epage><pages>55-62</pages><issn>2194-9034</issn><issn>1682-1750</issn><eissn>2194-9034</eissn><abstract>The catastrophic floods that hit Rio Grande do Sul, Brazil, in May 2024 underscored the urgent necessity for sophisticated flood monitoring and management methods. Notably, Synthetic Aperture Radar (SAR) satellite imagery has proven to be an essential resource for detecting flooded regions and evaluating the extent of flooding, even in challenging weather conditions. The Lessonia-1 SAR project represents a significant advancement in Brazil’s technological capabilities, particularly in enhancing flood management. By providing continuous and precise imagery monitoring, it plays a crucial role in mitigating flood risks. During heavy rains in the southern Brazilian State of Rio Grande do Sul, the Space Operations Center (COPE) was tasked to acquire imagery from Lessonia-1 SAR to support operations aimed at mitigating the impact on residents' lives. The purpose of this study is to assess the feasibility of utilizing Lessonia-1 SAR imagery, operating at X band with VV polarization, using a time-series approach for identifying flooded areas. The results demonstrate that utilizing imagery from October 2022 (before) and May 2024 (after) with normalization between both images enables the identification of flooded areas of interest. Additionally, the study employs false-color composition (R:after, G:before and B:normalization) to visualize the flooding curve in blue.</abstract><cop>Gottingen</cop><pub>Copernicus GmbH</pub><doi>10.5194/isprs-archives-XLVIII-3-W3-2024-55-2024</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-9034 |
ispartof | International archives of the photogrammetry, remote sensing and spatial information sciences., 2024-11, Vol.XLVIII-3/W3-2024, p.55-62 |
issn | 2194-9034 1682-1750 2194-9034 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_367b970b4d8645c4a2b4487afbf22157 |
source | Publicly Available Content Database; EZB Free E-Journals |
subjects | Environmental risk Feasibility studies Flood control Flood management Flooding Floods Image acquisition Image enhancement Lessonia Management methods Monitoring Project management Radar imaging SAR (radar) Satellite imagery Superhigh frequencies Synthetic aperture radar Time series Weather |
title | Lessonia-1 SAR time-series for identifying flooded areas |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T05%3A23%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lessonia-1%20SAR%20time-series%20for%20identifying%20flooded%20areas&rft.jtitle=International%20archives%20of%20the%20photogrammetry,%20remote%20sensing%20and%20spatial%20information%20sciences.&rft.au=Lima,%20Sidney%20A.&rft.date=2024-11-02&rft.volume=XLVIII-3/W3-2024&rft.spage=55&rft.epage=62&rft.pages=55-62&rft.issn=2194-9034&rft.eissn=2194-9034&rft_id=info:doi/10.5194/isprs-archives-XLVIII-3-W3-2024-55-2024&rft_dat=%3Cproquest_doaj_%3E3123197605%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1585-94aecfa1514dda0ff47fa3194f17e5d83f9c8a5f53cffb10a11d1750225658b63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3123197605&rft_id=info:pmid/&rfr_iscdi=true |