Loading…

Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics

Reactive Oxygen Species or "ROS" encompass several molecules derived from oxygen that can oxidize other molecules and subsequently transition rapidly between species. The key roles of ROS in biological processes are cell signaling, biosynthetic processes, and host defense. In cancer cells,...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2020-04, Vol.21 (9), p.3100
Main Authors: Ghoneum, Alia, Abdulfattah, Ammar Yasser, Warren, Bailey Olivia, Shu, Junjun, Said, Neveen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-5c1731e4a5a1d92fcc1cdb3d3e0e26e3d414db560a0bda42a3e31e02891d0c553
cites cdi_FETCH-LOGICAL-c478t-5c1731e4a5a1d92fcc1cdb3d3e0e26e3d414db560a0bda42a3e31e02891d0c553
container_end_page
container_issue 9
container_start_page 3100
container_title International journal of molecular sciences
container_volume 21
creator Ghoneum, Alia
Abdulfattah, Ammar Yasser
Warren, Bailey Olivia
Shu, Junjun
Said, Neveen
description Reactive Oxygen Species or "ROS" encompass several molecules derived from oxygen that can oxidize other molecules and subsequently transition rapidly between species. The key roles of ROS in biological processes are cell signaling, biosynthetic processes, and host defense. In cancer cells, increased ROS production and oxidative stress are instigated by carcinogens, oncogenic mutations, and importantly, metabolic reprograming of the rapidly proliferating cancer cells. Increased ROS production activates myriad downstream survival pathways that further cancer progression and metastasis. In this review, we highlight the relation between ROS, the metabolic programing of cancer, and stromal and immune cells with emphasis on and the transcription machinery involved in redox homeostasis, metabolic programing and malignant phenotype. We also shed light on the therapeutic targeting of metabolic pathways generating ROS as we investigate: Orlistat, Biguandes, AICAR, 2 Deoxyglucose, CPI-613, and Etomoxir.
doi_str_mv 10.3390/ijms21093100
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_36944ced773d47969a80cf52d6580a8a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_36944ced773d47969a80cf52d6580a8a</doaj_id><sourcerecordid>2397430141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-5c1731e4a5a1d92fcc1cdb3d3e0e26e3d414db560a0bda42a3e31e02891d0c553</originalsourceid><addsrcrecordid>eNpVkU1vEzEQhi1ERUvhxhmtxJXA-Gu95oBURUArtWqFwtmatSfJRrvrYG-q8u9xSKnSky2_jx7P6GXsHYdPUlr43G2GLDhYyQFesDOuhJgB1Obl0f2Uvc55AyCk0PYVO5VCagUAZ8z_pBAfqss4UMwT5i5XOIbqhiZsY9_loerGao6jp_Sluqjmcdj29FByv8ZxH-_puzjROHXYVwtMK5ooVIs1JdzSbup8fsNOlthnevt4nrNf378t5pez69sfV_OL65lXpplm2nMjOSnUyIMVS--5D60MkoBETTIorkKra0BoAyqBkgoOorE8gNdanrOrgzdE3Lht6gZMf1zEzv17iGnlMJWBenKytkp5CsYUrbG1xQb8UotQ6wawweL6enBtd-1AwZf9EvbPpM-TsVu7Vbx3RijDa14EHx4FKf7eUZ7cJu7SWPZ3QlqjJHC1pz4eKJ9izomWTz9wcPt63XG9BX9_PNUT_L9P-Rc-dqFS</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2397430141</pqid></control><display><type>article</type><title>Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Ghoneum, Alia ; Abdulfattah, Ammar Yasser ; Warren, Bailey Olivia ; Shu, Junjun ; Said, Neveen</creator><creatorcontrib>Ghoneum, Alia ; Abdulfattah, Ammar Yasser ; Warren, Bailey Olivia ; Shu, Junjun ; Said, Neveen</creatorcontrib><description>Reactive Oxygen Species or "ROS" encompass several molecules derived from oxygen that can oxidize other molecules and subsequently transition rapidly between species. The key roles of ROS in biological processes are cell signaling, biosynthetic processes, and host defense. In cancer cells, increased ROS production and oxidative stress are instigated by carcinogens, oncogenic mutations, and importantly, metabolic reprograming of the rapidly proliferating cancer cells. Increased ROS production activates myriad downstream survival pathways that further cancer progression and metastasis. In this review, we highlight the relation between ROS, the metabolic programing of cancer, and stromal and immune cells with emphasis on and the transcription machinery involved in redox homeostasis, metabolic programing and malignant phenotype. We also shed light on the therapeutic targeting of metabolic pathways generating ROS as we investigate: Orlistat, Biguandes, AICAR, 2 Deoxyglucose, CPI-613, and Etomoxir.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms21093100</identifier><identifier>PMID: 32354000</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Animals ; Antineoplastic Agents - pharmacology ; Antineoplastic Agents - therapeutic use ; Antioxidants ; Biological activity ; Cancer ; Carcinogens ; Cell cycle ; Clinical Trials as Topic ; Cytochrome ; Cytokines ; Deoxyglucose ; Deoxyribonucleic acid ; Disease Progression ; DNA ; Enzymes ; Free radicals ; Gene expression ; Growth factors ; HIF-1α ; Homeostasis ; Homeostasis - drug effects ; Humans ; Hypoxia ; Immune system ; Kinases ; Metabolic Networks and Pathways - drug effects ; Metabolic pathways ; Metabolism ; Metastases ; Mitochondria ; Mitochondrial DNA ; Molecular Targeted Therapy ; Mutation ; Neoplasms - drug therapy ; Neoplasms - metabolism ; Nitrogen dioxide ; Oxidation ; Oxidative stress ; Oxidative Stress - drug effects ; PGC-1α ; Phenotypes ; Phosphorylation ; Physiology ; Production increases ; Proteins ; Reactive oxygen species ; Reactive Oxygen Species - metabolism ; redox systems ; Respiration ; Review ; ROS ; Signal Transduction - drug effects ; Therapeutic targets ; Transcription ; Tumors</subject><ispartof>International journal of molecular sciences, 2020-04, Vol.21 (9), p.3100</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2020 by the authors. 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-5c1731e4a5a1d92fcc1cdb3d3e0e26e3d414db560a0bda42a3e31e02891d0c553</citedby><cites>FETCH-LOGICAL-c478t-5c1731e4a5a1d92fcc1cdb3d3e0e26e3d414db560a0bda42a3e31e02891d0c553</cites><orcidid>0000-0002-7904-2558 ; 0000-0001-5460-5417</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2397430141/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2397430141?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32354000$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ghoneum, Alia</creatorcontrib><creatorcontrib>Abdulfattah, Ammar Yasser</creatorcontrib><creatorcontrib>Warren, Bailey Olivia</creatorcontrib><creatorcontrib>Shu, Junjun</creatorcontrib><creatorcontrib>Said, Neveen</creatorcontrib><title>Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Reactive Oxygen Species or "ROS" encompass several molecules derived from oxygen that can oxidize other molecules and subsequently transition rapidly between species. The key roles of ROS in biological processes are cell signaling, biosynthetic processes, and host defense. In cancer cells, increased ROS production and oxidative stress are instigated by carcinogens, oncogenic mutations, and importantly, metabolic reprograming of the rapidly proliferating cancer cells. Increased ROS production activates myriad downstream survival pathways that further cancer progression and metastasis. In this review, we highlight the relation between ROS, the metabolic programing of cancer, and stromal and immune cells with emphasis on and the transcription machinery involved in redox homeostasis, metabolic programing and malignant phenotype. We also shed light on the therapeutic targeting of metabolic pathways generating ROS as we investigate: Orlistat, Biguandes, AICAR, 2 Deoxyglucose, CPI-613, and Etomoxir.</description><subject>Animals</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antineoplastic Agents - therapeutic use</subject><subject>Antioxidants</subject><subject>Biological activity</subject><subject>Cancer</subject><subject>Carcinogens</subject><subject>Cell cycle</subject><subject>Clinical Trials as Topic</subject><subject>Cytochrome</subject><subject>Cytokines</subject><subject>Deoxyglucose</subject><subject>Deoxyribonucleic acid</subject><subject>Disease Progression</subject><subject>DNA</subject><subject>Enzymes</subject><subject>Free radicals</subject><subject>Gene expression</subject><subject>Growth factors</subject><subject>HIF-1α</subject><subject>Homeostasis</subject><subject>Homeostasis - drug effects</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>Immune system</subject><subject>Kinases</subject><subject>Metabolic Networks and Pathways - drug effects</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metastases</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>Molecular Targeted Therapy</subject><subject>Mutation</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - metabolism</subject><subject>Nitrogen dioxide</subject><subject>Oxidation</subject><subject>Oxidative stress</subject><subject>Oxidative Stress - drug effects</subject><subject>PGC-1α</subject><subject>Phenotypes</subject><subject>Phosphorylation</subject><subject>Physiology</subject><subject>Production increases</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Reactive Oxygen Species - metabolism</subject><subject>redox systems</subject><subject>Respiration</subject><subject>Review</subject><subject>ROS</subject><subject>Signal Transduction - drug effects</subject><subject>Therapeutic targets</subject><subject>Transcription</subject><subject>Tumors</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkU1vEzEQhi1ERUvhxhmtxJXA-Gu95oBURUArtWqFwtmatSfJRrvrYG-q8u9xSKnSky2_jx7P6GXsHYdPUlr43G2GLDhYyQFesDOuhJgB1Obl0f2Uvc55AyCk0PYVO5VCagUAZ8z_pBAfqss4UMwT5i5XOIbqhiZsY9_loerGao6jp_Sluqjmcdj29FByv8ZxH-_puzjROHXYVwtMK5ooVIs1JdzSbup8fsNOlthnevt4nrNf378t5pez69sfV_OL65lXpplm2nMjOSnUyIMVS--5D60MkoBETTIorkKra0BoAyqBkgoOorE8gNdanrOrgzdE3Lht6gZMf1zEzv17iGnlMJWBenKytkp5CsYUrbG1xQb8UotQ6wawweL6enBtd-1AwZf9EvbPpM-TsVu7Vbx3RijDa14EHx4FKf7eUZ7cJu7SWPZ3QlqjJHC1pz4eKJ9izomWTz9wcPt63XG9BX9_PNUT_L9P-Rc-dqFS</recordid><startdate>20200428</startdate><enddate>20200428</enddate><creator>Ghoneum, Alia</creator><creator>Abdulfattah, Ammar Yasser</creator><creator>Warren, Bailey Olivia</creator><creator>Shu, Junjun</creator><creator>Said, Neveen</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7904-2558</orcidid><orcidid>https://orcid.org/0000-0001-5460-5417</orcidid></search><sort><creationdate>20200428</creationdate><title>Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics</title><author>Ghoneum, Alia ; Abdulfattah, Ammar Yasser ; Warren, Bailey Olivia ; Shu, Junjun ; Said, Neveen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-5c1731e4a5a1d92fcc1cdb3d3e0e26e3d414db560a0bda42a3e31e02891d0c553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antineoplastic Agents - therapeutic use</topic><topic>Antioxidants</topic><topic>Biological activity</topic><topic>Cancer</topic><topic>Carcinogens</topic><topic>Cell cycle</topic><topic>Clinical Trials as Topic</topic><topic>Cytochrome</topic><topic>Cytokines</topic><topic>Deoxyglucose</topic><topic>Deoxyribonucleic acid</topic><topic>Disease Progression</topic><topic>DNA</topic><topic>Enzymes</topic><topic>Free radicals</topic><topic>Gene expression</topic><topic>Growth factors</topic><topic>HIF-1α</topic><topic>Homeostasis</topic><topic>Homeostasis - drug effects</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>Immune system</topic><topic>Kinases</topic><topic>Metabolic Networks and Pathways - drug effects</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metastases</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>Molecular Targeted Therapy</topic><topic>Mutation</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - metabolism</topic><topic>Nitrogen dioxide</topic><topic>Oxidation</topic><topic>Oxidative stress</topic><topic>Oxidative Stress - drug effects</topic><topic>PGC-1α</topic><topic>Phenotypes</topic><topic>Phosphorylation</topic><topic>Physiology</topic><topic>Production increases</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Reactive Oxygen Species - metabolism</topic><topic>redox systems</topic><topic>Respiration</topic><topic>Review</topic><topic>ROS</topic><topic>Signal Transduction - drug effects</topic><topic>Therapeutic targets</topic><topic>Transcription</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghoneum, Alia</creatorcontrib><creatorcontrib>Abdulfattah, Ammar Yasser</creatorcontrib><creatorcontrib>Warren, Bailey Olivia</creatorcontrib><creatorcontrib>Shu, Junjun</creatorcontrib><creatorcontrib>Said, Neveen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghoneum, Alia</au><au>Abdulfattah, Ammar Yasser</au><au>Warren, Bailey Olivia</au><au>Shu, Junjun</au><au>Said, Neveen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2020-04-28</date><risdate>2020</risdate><volume>21</volume><issue>9</issue><spage>3100</spage><pages>3100-</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Reactive Oxygen Species or "ROS" encompass several molecules derived from oxygen that can oxidize other molecules and subsequently transition rapidly between species. The key roles of ROS in biological processes are cell signaling, biosynthetic processes, and host defense. In cancer cells, increased ROS production and oxidative stress are instigated by carcinogens, oncogenic mutations, and importantly, metabolic reprograming of the rapidly proliferating cancer cells. Increased ROS production activates myriad downstream survival pathways that further cancer progression and metastasis. In this review, we highlight the relation between ROS, the metabolic programing of cancer, and stromal and immune cells with emphasis on and the transcription machinery involved in redox homeostasis, metabolic programing and malignant phenotype. We also shed light on the therapeutic targeting of metabolic pathways generating ROS as we investigate: Orlistat, Biguandes, AICAR, 2 Deoxyglucose, CPI-613, and Etomoxir.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>32354000</pmid><doi>10.3390/ijms21093100</doi><orcidid>https://orcid.org/0000-0002-7904-2558</orcidid><orcidid>https://orcid.org/0000-0001-5460-5417</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2020-04, Vol.21 (9), p.3100
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_36944ced773d47969a80cf52d6580a8a
source Publicly Available Content (ProQuest); PubMed Central
subjects Animals
Antineoplastic Agents - pharmacology
Antineoplastic Agents - therapeutic use
Antioxidants
Biological activity
Cancer
Carcinogens
Cell cycle
Clinical Trials as Topic
Cytochrome
Cytokines
Deoxyglucose
Deoxyribonucleic acid
Disease Progression
DNA
Enzymes
Free radicals
Gene expression
Growth factors
HIF-1α
Homeostasis
Homeostasis - drug effects
Humans
Hypoxia
Immune system
Kinases
Metabolic Networks and Pathways - drug effects
Metabolic pathways
Metabolism
Metastases
Mitochondria
Mitochondrial DNA
Molecular Targeted Therapy
Mutation
Neoplasms - drug therapy
Neoplasms - metabolism
Nitrogen dioxide
Oxidation
Oxidative stress
Oxidative Stress - drug effects
PGC-1α
Phenotypes
Phosphorylation
Physiology
Production increases
Proteins
Reactive oxygen species
Reactive Oxygen Species - metabolism
redox systems
Respiration
Review
ROS
Signal Transduction - drug effects
Therapeutic targets
Transcription
Tumors
title Redox Homeostasis and Metabolism in Cancer: A Complex Mechanism and Potential Targeted Therapeutics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A29%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%20Homeostasis%20and%20Metabolism%20in%20Cancer:%20A%20Complex%20Mechanism%20and%20Potential%20Targeted%20Therapeutics&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Ghoneum,%20Alia&rft.date=2020-04-28&rft.volume=21&rft.issue=9&rft.spage=3100&rft.pages=3100-&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms21093100&rft_dat=%3Cproquest_doaj_%3E2397430141%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-5c1731e4a5a1d92fcc1cdb3d3e0e26e3d414db560a0bda42a3e31e02891d0c553%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2397430141&rft_id=info:pmid/32354000&rfr_iscdi=true