Loading…
Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control
Average speed is crucial for calculating link travel time to find the fastest path in a road network. However, readily available data sources like OpenStreetMap (OSM) often lack information about the average speed of a road. However, OSM contains other road information which enables an estimation of...
Saved in:
Published in: | ISPRS international journal of geo-information 2020-01, Vol.9 (1), p.55 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33 |
container_end_page | |
container_issue | 1 |
container_start_page | 55 |
container_title | ISPRS international journal of geo-information |
container_volume | 9 |
creator | Guth, Johanna Wursthorn, Sven Keller, Sina |
description | Average speed is crucial for calculating link travel time to find the fastest path in a road network. However, readily available data sources like OpenStreetMap (OSM) often lack information about the average speed of a road. However, OSM contains other road information which enables an estimation of average speed in rural regions. In this paper, we develop a Fuzzy Framework for Speed Estimation (Fuzzy-FSE) that employs fuzzy control to estimate average speed based on the parameters road class, road slope, road surface and link length. The OSM road network and, optionally, a digital elevation model (DEM) serve as free-to-use and worldwide available input data. The Fuzzy-FSE consists of two parts: (a) a rule and knowledge base which decides on the output membership functions and (b) multiple Fuzzy Control Systems which calculate the output average speeds. The Fuzzy-FSE is applied exemplary and evaluated for the BioBío and Maule region in central Chile and for the north of New South Wales in Australia. Results demonstrate that, even using only OSM data, the Fuzzy-FSE performs better than existing methods such as fixed speed profiles. Compared to these methods, the Fuzzy-FSE improves the speed estimation between 2% to 12%. In future work, we will investigate the potential of data-driven machine learning methods to estimate average speed. The applied datasets and the source code of the Fuzzy-FSE are available via GitHub. |
doi_str_mv | 10.3390/ijgi9010055 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3698eee6c21d4c82a7bb5605f1fab8d4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3698eee6c21d4c82a7bb5605f1fab8d4</doaj_id><sourcerecordid>2548589142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRUNQn_0DAR1nNvcmjFKuFqsXLc8huJiW1bmqSKu2vd7UinZcZDodvDpyqOiP4kjGNr8J8FjQmGAuxVx1RSnGtteT7O_dhdZrzHPejCVMcH1XT-9WihHpqk32HAgnd5BLebQmxQ9Gj609IdgboeQngUOjQU7QOPUD5iukto9ccuhkarTabNRrGrqS4OKkOvF1kOP3bx9Xr6OZleFdPHm_Hw-tJ3TLJS62VpV561xDKONjGDpwFzZkjlgsnxcB5YKrlrGFSUSxF41mDtW-9wFQ4xo6r8Zbrop2bZepDp7WJNphfIaaZsamEdgGGSa0AQLaUON4qagdNIyQWnnjbKMd71vmWtUzxYwW5mHlcpa6Pb6jgSihNOO1dF1tXm2LOCfz_V4LNTwNmpwH2DbEueMo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548589142</pqid></control><display><type>article</type><title>Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control</title><source>Publicly Available Content Database</source><creator>Guth, Johanna ; Wursthorn, Sven ; Keller, Sina</creator><creatorcontrib>Guth, Johanna ; Wursthorn, Sven ; Keller, Sina</creatorcontrib><description>Average speed is crucial for calculating link travel time to find the fastest path in a road network. However, readily available data sources like OpenStreetMap (OSM) often lack information about the average speed of a road. However, OSM contains other road information which enables an estimation of average speed in rural regions. In this paper, we develop a Fuzzy Framework for Speed Estimation (Fuzzy-FSE) that employs fuzzy control to estimate average speed based on the parameters road class, road slope, road surface and link length. The OSM road network and, optionally, a digital elevation model (DEM) serve as free-to-use and worldwide available input data. The Fuzzy-FSE consists of two parts: (a) a rule and knowledge base which decides on the output membership functions and (b) multiple Fuzzy Control Systems which calculate the output average speeds. The Fuzzy-FSE is applied exemplary and evaluated for the BioBío and Maule region in central Chile and for the north of New South Wales in Australia. Results demonstrate that, even using only OSM data, the Fuzzy-FSE performs better than existing methods such as fixed speed profiles. Compared to these methods, the Fuzzy-FSE improves the speed estimation between 2% to 12%. In future work, we will investigate the potential of data-driven machine learning methods to estimate average speed. The applied datasets and the source code of the Fuzzy-FSE are available via GitHub.</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi9010055</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Application programming interface ; Case studies ; Control ; Control systems ; Data ; Datasets ; digital elevation model ; Digital Elevation Models ; Digital mapping ; Fuzzy control ; fuzzy control system ; Fuzzy systems ; Knowledge bases (artificial intelligence) ; Learning algorithms ; link travel time ; Machine learning ; Methods ; openstreetmap ; Parameter estimation ; Roads ; Roads & highways ; routing ; Rural areas ; Rural roads ; Source code ; System theory ; Topography ; Traffic speed ; Travel ; Travel time</subject><ispartof>ISPRS international journal of geo-information, 2020-01, Vol.9 (1), p.55</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33</citedby><cites>FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33</cites><orcidid>0000-0002-6442-9151 ; 0000-0002-7710-5316 ; 0000-0002-1734-6986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548589142/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548589142?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Guth, Johanna</creatorcontrib><creatorcontrib>Wursthorn, Sven</creatorcontrib><creatorcontrib>Keller, Sina</creatorcontrib><title>Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control</title><title>ISPRS international journal of geo-information</title><description>Average speed is crucial for calculating link travel time to find the fastest path in a road network. However, readily available data sources like OpenStreetMap (OSM) often lack information about the average speed of a road. However, OSM contains other road information which enables an estimation of average speed in rural regions. In this paper, we develop a Fuzzy Framework for Speed Estimation (Fuzzy-FSE) that employs fuzzy control to estimate average speed based on the parameters road class, road slope, road surface and link length. The OSM road network and, optionally, a digital elevation model (DEM) serve as free-to-use and worldwide available input data. The Fuzzy-FSE consists of two parts: (a) a rule and knowledge base which decides on the output membership functions and (b) multiple Fuzzy Control Systems which calculate the output average speeds. The Fuzzy-FSE is applied exemplary and evaluated for the BioBío and Maule region in central Chile and for the north of New South Wales in Australia. Results demonstrate that, even using only OSM data, the Fuzzy-FSE performs better than existing methods such as fixed speed profiles. Compared to these methods, the Fuzzy-FSE improves the speed estimation between 2% to 12%. In future work, we will investigate the potential of data-driven machine learning methods to estimate average speed. The applied datasets and the source code of the Fuzzy-FSE are available via GitHub.</description><subject>Application programming interface</subject><subject>Case studies</subject><subject>Control</subject><subject>Control systems</subject><subject>Data</subject><subject>Datasets</subject><subject>digital elevation model</subject><subject>Digital Elevation Models</subject><subject>Digital mapping</subject><subject>Fuzzy control</subject><subject>fuzzy control system</subject><subject>Fuzzy systems</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Learning algorithms</subject><subject>link travel time</subject><subject>Machine learning</subject><subject>Methods</subject><subject>openstreetmap</subject><subject>Parameter estimation</subject><subject>Roads</subject><subject>Roads & highways</subject><subject>routing</subject><subject>Rural areas</subject><subject>Rural roads</subject><subject>Source code</subject><subject>System theory</subject><subject>Topography</subject><subject>Traffic speed</subject><subject>Travel</subject><subject>Travel time</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRUNQn_0DAR1nNvcmjFKuFqsXLc8huJiW1bmqSKu2vd7UinZcZDodvDpyqOiP4kjGNr8J8FjQmGAuxVx1RSnGtteT7O_dhdZrzHPejCVMcH1XT-9WihHpqk32HAgnd5BLebQmxQ9Gj609IdgboeQngUOjQU7QOPUD5iukto9ccuhkarTabNRrGrqS4OKkOvF1kOP3bx9Xr6OZleFdPHm_Hw-tJ3TLJS62VpV561xDKONjGDpwFzZkjlgsnxcB5YKrlrGFSUSxF41mDtW-9wFQ4xo6r8Zbrop2bZepDp7WJNphfIaaZsamEdgGGSa0AQLaUON4qagdNIyQWnnjbKMd71vmWtUzxYwW5mHlcpa6Pb6jgSihNOO1dF1tXm2LOCfz_V4LNTwNmpwH2DbEueMo</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Guth, Johanna</creator><creator>Wursthorn, Sven</creator><creator>Keller, Sina</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6442-9151</orcidid><orcidid>https://orcid.org/0000-0002-7710-5316</orcidid><orcidid>https://orcid.org/0000-0002-1734-6986</orcidid></search><sort><creationdate>20200101</creationdate><title>Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control</title><author>Guth, Johanna ; Wursthorn, Sven ; Keller, Sina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Application programming interface</topic><topic>Case studies</topic><topic>Control</topic><topic>Control systems</topic><topic>Data</topic><topic>Datasets</topic><topic>digital elevation model</topic><topic>Digital Elevation Models</topic><topic>Digital mapping</topic><topic>Fuzzy control</topic><topic>fuzzy control system</topic><topic>Fuzzy systems</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Learning algorithms</topic><topic>link travel time</topic><topic>Machine learning</topic><topic>Methods</topic><topic>openstreetmap</topic><topic>Parameter estimation</topic><topic>Roads</topic><topic>Roads & highways</topic><topic>routing</topic><topic>Rural areas</topic><topic>Rural roads</topic><topic>Source code</topic><topic>System theory</topic><topic>Topography</topic><topic>Traffic speed</topic><topic>Travel</topic><topic>Travel time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guth, Johanna</creatorcontrib><creatorcontrib>Wursthorn, Sven</creatorcontrib><creatorcontrib>Keller, Sina</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guth, Johanna</au><au>Wursthorn, Sven</au><au>Keller, Sina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><spage>55</spage><pages>55-</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>Average speed is crucial for calculating link travel time to find the fastest path in a road network. However, readily available data sources like OpenStreetMap (OSM) often lack information about the average speed of a road. However, OSM contains other road information which enables an estimation of average speed in rural regions. In this paper, we develop a Fuzzy Framework for Speed Estimation (Fuzzy-FSE) that employs fuzzy control to estimate average speed based on the parameters road class, road slope, road surface and link length. The OSM road network and, optionally, a digital elevation model (DEM) serve as free-to-use and worldwide available input data. The Fuzzy-FSE consists of two parts: (a) a rule and knowledge base which decides on the output membership functions and (b) multiple Fuzzy Control Systems which calculate the output average speeds. The Fuzzy-FSE is applied exemplary and evaluated for the BioBío and Maule region in central Chile and for the north of New South Wales in Australia. Results demonstrate that, even using only OSM data, the Fuzzy-FSE performs better than existing methods such as fixed speed profiles. Compared to these methods, the Fuzzy-FSE improves the speed estimation between 2% to 12%. In future work, we will investigate the potential of data-driven machine learning methods to estimate average speed. The applied datasets and the source code of the Fuzzy-FSE are available via GitHub.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijgi9010055</doi><orcidid>https://orcid.org/0000-0002-6442-9151</orcidid><orcidid>https://orcid.org/0000-0002-7710-5316</orcidid><orcidid>https://orcid.org/0000-0002-1734-6986</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2220-9964 |
ispartof | ISPRS international journal of geo-information, 2020-01, Vol.9 (1), p.55 |
issn | 2220-9964 2220-9964 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3698eee6c21d4c82a7bb5605f1fab8d4 |
source | Publicly Available Content Database |
subjects | Application programming interface Case studies Control Control systems Data Datasets digital elevation model Digital Elevation Models Digital mapping Fuzzy control fuzzy control system Fuzzy systems Knowledge bases (artificial intelligence) Learning algorithms link travel time Machine learning Methods openstreetmap Parameter estimation Roads Roads & highways routing Rural areas Rural roads Source code System theory Topography Traffic speed Travel Travel time |
title | Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Parameter%20Estimation%20of%20Average%20Speed%20in%20Road%20Networks%20Using%20Fuzzy%20Control&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=Guth,%20Johanna&rft.date=2020-01-01&rft.volume=9&rft.issue=1&rft.spage=55&rft.pages=55-&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi9010055&rft_dat=%3Cproquest_doaj_%3E2548589142%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548589142&rft_id=info:pmid/&rfr_iscdi=true |