Loading…

Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control

Average speed is crucial for calculating link travel time to find the fastest path in a road network. However, readily available data sources like OpenStreetMap (OSM) often lack information about the average speed of a road. However, OSM contains other road information which enables an estimation of...

Full description

Saved in:
Bibliographic Details
Published in:ISPRS international journal of geo-information 2020-01, Vol.9 (1), p.55
Main Authors: Guth, Johanna, Wursthorn, Sven, Keller, Sina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33
cites cdi_FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33
container_end_page
container_issue 1
container_start_page 55
container_title ISPRS international journal of geo-information
container_volume 9
creator Guth, Johanna
Wursthorn, Sven
Keller, Sina
description Average speed is crucial for calculating link travel time to find the fastest path in a road network. However, readily available data sources like OpenStreetMap (OSM) often lack information about the average speed of a road. However, OSM contains other road information which enables an estimation of average speed in rural regions. In this paper, we develop a Fuzzy Framework for Speed Estimation (Fuzzy-FSE) that employs fuzzy control to estimate average speed based on the parameters road class, road slope, road surface and link length. The OSM road network and, optionally, a digital elevation model (DEM) serve as free-to-use and worldwide available input data. The Fuzzy-FSE consists of two parts: (a) a rule and knowledge base which decides on the output membership functions and (b) multiple Fuzzy Control Systems which calculate the output average speeds. The Fuzzy-FSE is applied exemplary and evaluated for the BioBío and Maule region in central Chile and for the north of New South Wales in Australia. Results demonstrate that, even using only OSM data, the Fuzzy-FSE performs better than existing methods such as fixed speed profiles. Compared to these methods, the Fuzzy-FSE improves the speed estimation between 2% to 12%. In future work, we will investigate the potential of data-driven machine learning methods to estimate average speed. The applied datasets and the source code of the Fuzzy-FSE are available via GitHub.
doi_str_mv 10.3390/ijgi9010055
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3698eee6c21d4c82a7bb5605f1fab8d4</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3698eee6c21d4c82a7bb5605f1fab8d4</doaj_id><sourcerecordid>2548589142</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33</originalsourceid><addsrcrecordid>eNpNkVtLAzEQhRdRUNQn_0DAR1nNvcmjFKuFqsXLc8huJiW1bmqSKu2vd7UinZcZDodvDpyqOiP4kjGNr8J8FjQmGAuxVx1RSnGtteT7O_dhdZrzHPejCVMcH1XT-9WihHpqk32HAgnd5BLebQmxQ9Gj609IdgboeQngUOjQU7QOPUD5iukto9ccuhkarTabNRrGrqS4OKkOvF1kOP3bx9Xr6OZleFdPHm_Hw-tJ3TLJS62VpV561xDKONjGDpwFzZkjlgsnxcB5YKrlrGFSUSxF41mDtW-9wFQ4xo6r8Zbrop2bZepDp7WJNphfIaaZsamEdgGGSa0AQLaUON4qagdNIyQWnnjbKMd71vmWtUzxYwW5mHlcpa6Pb6jgSihNOO1dF1tXm2LOCfz_V4LNTwNmpwH2DbEueMo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548589142</pqid></control><display><type>article</type><title>Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control</title><source>Publicly Available Content Database</source><creator>Guth, Johanna ; Wursthorn, Sven ; Keller, Sina</creator><creatorcontrib>Guth, Johanna ; Wursthorn, Sven ; Keller, Sina</creatorcontrib><description>Average speed is crucial for calculating link travel time to find the fastest path in a road network. However, readily available data sources like OpenStreetMap (OSM) often lack information about the average speed of a road. However, OSM contains other road information which enables an estimation of average speed in rural regions. In this paper, we develop a Fuzzy Framework for Speed Estimation (Fuzzy-FSE) that employs fuzzy control to estimate average speed based on the parameters road class, road slope, road surface and link length. The OSM road network and, optionally, a digital elevation model (DEM) serve as free-to-use and worldwide available input data. The Fuzzy-FSE consists of two parts: (a) a rule and knowledge base which decides on the output membership functions and (b) multiple Fuzzy Control Systems which calculate the output average speeds. The Fuzzy-FSE is applied exemplary and evaluated for the BioBío and Maule region in central Chile and for the north of New South Wales in Australia. Results demonstrate that, even using only OSM data, the Fuzzy-FSE performs better than existing methods such as fixed speed profiles. Compared to these methods, the Fuzzy-FSE improves the speed estimation between 2% to 12%. In future work, we will investigate the potential of data-driven machine learning methods to estimate average speed. The applied datasets and the source code of the Fuzzy-FSE are available via GitHub.</description><identifier>ISSN: 2220-9964</identifier><identifier>EISSN: 2220-9964</identifier><identifier>DOI: 10.3390/ijgi9010055</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Application programming interface ; Case studies ; Control ; Control systems ; Data ; Datasets ; digital elevation model ; Digital Elevation Models ; Digital mapping ; Fuzzy control ; fuzzy control system ; Fuzzy systems ; Knowledge bases (artificial intelligence) ; Learning algorithms ; link travel time ; Machine learning ; Methods ; openstreetmap ; Parameter estimation ; Roads ; Roads &amp; highways ; routing ; Rural areas ; Rural roads ; Source code ; System theory ; Topography ; Traffic speed ; Travel ; Travel time</subject><ispartof>ISPRS international journal of geo-information, 2020-01, Vol.9 (1), p.55</ispartof><rights>2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33</citedby><cites>FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33</cites><orcidid>0000-0002-6442-9151 ; 0000-0002-7710-5316 ; 0000-0002-1734-6986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2548589142/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2548589142?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Guth, Johanna</creatorcontrib><creatorcontrib>Wursthorn, Sven</creatorcontrib><creatorcontrib>Keller, Sina</creatorcontrib><title>Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control</title><title>ISPRS international journal of geo-information</title><description>Average speed is crucial for calculating link travel time to find the fastest path in a road network. However, readily available data sources like OpenStreetMap (OSM) often lack information about the average speed of a road. However, OSM contains other road information which enables an estimation of average speed in rural regions. In this paper, we develop a Fuzzy Framework for Speed Estimation (Fuzzy-FSE) that employs fuzzy control to estimate average speed based on the parameters road class, road slope, road surface and link length. The OSM road network and, optionally, a digital elevation model (DEM) serve as free-to-use and worldwide available input data. The Fuzzy-FSE consists of two parts: (a) a rule and knowledge base which decides on the output membership functions and (b) multiple Fuzzy Control Systems which calculate the output average speeds. The Fuzzy-FSE is applied exemplary and evaluated for the BioBío and Maule region in central Chile and for the north of New South Wales in Australia. Results demonstrate that, even using only OSM data, the Fuzzy-FSE performs better than existing methods such as fixed speed profiles. Compared to these methods, the Fuzzy-FSE improves the speed estimation between 2% to 12%. In future work, we will investigate the potential of data-driven machine learning methods to estimate average speed. The applied datasets and the source code of the Fuzzy-FSE are available via GitHub.</description><subject>Application programming interface</subject><subject>Case studies</subject><subject>Control</subject><subject>Control systems</subject><subject>Data</subject><subject>Datasets</subject><subject>digital elevation model</subject><subject>Digital Elevation Models</subject><subject>Digital mapping</subject><subject>Fuzzy control</subject><subject>fuzzy control system</subject><subject>Fuzzy systems</subject><subject>Knowledge bases (artificial intelligence)</subject><subject>Learning algorithms</subject><subject>link travel time</subject><subject>Machine learning</subject><subject>Methods</subject><subject>openstreetmap</subject><subject>Parameter estimation</subject><subject>Roads</subject><subject>Roads &amp; highways</subject><subject>routing</subject><subject>Rural areas</subject><subject>Rural roads</subject><subject>Source code</subject><subject>System theory</subject><subject>Topography</subject><subject>Traffic speed</subject><subject>Travel</subject><subject>Travel time</subject><issn>2220-9964</issn><issn>2220-9964</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkVtLAzEQhRdRUNQn_0DAR1nNvcmjFKuFqsXLc8huJiW1bmqSKu2vd7UinZcZDodvDpyqOiP4kjGNr8J8FjQmGAuxVx1RSnGtteT7O_dhdZrzHPejCVMcH1XT-9WihHpqk32HAgnd5BLebQmxQ9Gj609IdgboeQngUOjQU7QOPUD5iukto9ccuhkarTabNRrGrqS4OKkOvF1kOP3bx9Xr6OZleFdPHm_Hw-tJ3TLJS62VpV561xDKONjGDpwFzZkjlgsnxcB5YKrlrGFSUSxF41mDtW-9wFQ4xo6r8Zbrop2bZepDp7WJNphfIaaZsamEdgGGSa0AQLaUON4qagdNIyQWnnjbKMd71vmWtUzxYwW5mHlcpa6Pb6jgSihNOO1dF1tXm2LOCfz_V4LNTwNmpwH2DbEueMo</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Guth, Johanna</creator><creator>Wursthorn, Sven</creator><creator>Keller, Sina</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6442-9151</orcidid><orcidid>https://orcid.org/0000-0002-7710-5316</orcidid><orcidid>https://orcid.org/0000-0002-1734-6986</orcidid></search><sort><creationdate>20200101</creationdate><title>Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control</title><author>Guth, Johanna ; Wursthorn, Sven ; Keller, Sina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Application programming interface</topic><topic>Case studies</topic><topic>Control</topic><topic>Control systems</topic><topic>Data</topic><topic>Datasets</topic><topic>digital elevation model</topic><topic>Digital Elevation Models</topic><topic>Digital mapping</topic><topic>Fuzzy control</topic><topic>fuzzy control system</topic><topic>Fuzzy systems</topic><topic>Knowledge bases (artificial intelligence)</topic><topic>Learning algorithms</topic><topic>link travel time</topic><topic>Machine learning</topic><topic>Methods</topic><topic>openstreetmap</topic><topic>Parameter estimation</topic><topic>Roads</topic><topic>Roads &amp; highways</topic><topic>routing</topic><topic>Rural areas</topic><topic>Rural roads</topic><topic>Source code</topic><topic>System theory</topic><topic>Topography</topic><topic>Traffic speed</topic><topic>Travel</topic><topic>Travel time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guth, Johanna</creatorcontrib><creatorcontrib>Wursthorn, Sven</creatorcontrib><creatorcontrib>Keller, Sina</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>ISPRS international journal of geo-information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guth, Johanna</au><au>Wursthorn, Sven</au><au>Keller, Sina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control</atitle><jtitle>ISPRS international journal of geo-information</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>9</volume><issue>1</issue><spage>55</spage><pages>55-</pages><issn>2220-9964</issn><eissn>2220-9964</eissn><abstract>Average speed is crucial for calculating link travel time to find the fastest path in a road network. However, readily available data sources like OpenStreetMap (OSM) often lack information about the average speed of a road. However, OSM contains other road information which enables an estimation of average speed in rural regions. In this paper, we develop a Fuzzy Framework for Speed Estimation (Fuzzy-FSE) that employs fuzzy control to estimate average speed based on the parameters road class, road slope, road surface and link length. The OSM road network and, optionally, a digital elevation model (DEM) serve as free-to-use and worldwide available input data. The Fuzzy-FSE consists of two parts: (a) a rule and knowledge base which decides on the output membership functions and (b) multiple Fuzzy Control Systems which calculate the output average speeds. The Fuzzy-FSE is applied exemplary and evaluated for the BioBío and Maule region in central Chile and for the north of New South Wales in Australia. Results demonstrate that, even using only OSM data, the Fuzzy-FSE performs better than existing methods such as fixed speed profiles. Compared to these methods, the Fuzzy-FSE improves the speed estimation between 2% to 12%. In future work, we will investigate the potential of data-driven machine learning methods to estimate average speed. The applied datasets and the source code of the Fuzzy-FSE are available via GitHub.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/ijgi9010055</doi><orcidid>https://orcid.org/0000-0002-6442-9151</orcidid><orcidid>https://orcid.org/0000-0002-7710-5316</orcidid><orcidid>https://orcid.org/0000-0002-1734-6986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2220-9964
ispartof ISPRS international journal of geo-information, 2020-01, Vol.9 (1), p.55
issn 2220-9964
2220-9964
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3698eee6c21d4c82a7bb5605f1fab8d4
source Publicly Available Content Database
subjects Application programming interface
Case studies
Control
Control systems
Data
Datasets
digital elevation model
Digital Elevation Models
Digital mapping
Fuzzy control
fuzzy control system
Fuzzy systems
Knowledge bases (artificial intelligence)
Learning algorithms
link travel time
Machine learning
Methods
openstreetmap
Parameter estimation
Roads
Roads & highways
routing
Rural areas
Rural roads
Source code
System theory
Topography
Traffic speed
Travel
Travel time
title Multi-Parameter Estimation of Average Speed in Road Networks Using Fuzzy Control
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Parameter%20Estimation%20of%20Average%20Speed%20in%20Road%20Networks%20Using%20Fuzzy%20Control&rft.jtitle=ISPRS%20international%20journal%20of%20geo-information&rft.au=Guth,%20Johanna&rft.date=2020-01-01&rft.volume=9&rft.issue=1&rft.spage=55&rft.pages=55-&rft.issn=2220-9964&rft.eissn=2220-9964&rft_id=info:doi/10.3390/ijgi9010055&rft_dat=%3Cproquest_doaj_%3E2548589142%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-98a2f6fdb1234eaba7dae943d1a45d657dfe38c43b3682065bf3b09fcf5025d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2548589142&rft_id=info:pmid/&rfr_iscdi=true