Loading…
Deep Learning Approaches for Prognosis of Automated Skin Disease
Skin problems are among the most common ailments on Earth. Despite its popularity, assessing it is not easy because of the complexities in skin tones, hair colors, and hairstyles. Skin disorders provide a significant public health risk across the globe. They become dangerous when they enter the inva...
Saved in:
Published in: | Life (Basel, Switzerland) Switzerland), 2022-03, Vol.12 (3), p.426 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93 |
container_end_page | |
container_issue | 3 |
container_start_page | 426 |
container_title | Life (Basel, Switzerland) |
container_volume | 12 |
creator | Kshirsagar, Pravin R Manoharan, Hariprasath Shitharth, S Alshareef, Abdulrhman M Albishry, Nabeel Balachandran, Praveen Kumar |
description | Skin problems are among the most common ailments on Earth. Despite its popularity, assessing it is not easy because of the complexities in skin tones, hair colors, and hairstyles. Skin disorders provide a significant public health risk across the globe. They become dangerous when they enter the invasive phase. Dermatological illnesses are a significant concern for the medical community. Because of increased pollution and poor diet, the number of individuals with skin disorders is on the rise at an alarming rate. People often overlook the early signs of skin illness. The current approach for diagnosing and treating skin conditions relies on a biopsy process examined and administered by physicians. Human assessment can be avoided with a hybrid technique, thus providing hopeful findings on time. Approaches to a thorough investigation indicate that deep learning methods might be used to construct frameworks capable of identifying diverse skin conditions. Skin and non-skin tissue must be distinguished to detect skin diseases. This research developed a skin disease classification system using MobileNetV2 and LSTM. For this system, accuracy in skin disease forecasting is the primary aim while ensuring excellent efficiency in storing complete state information for exact forecasts. |
doi_str_mv | 10.3390/life12030426 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_36b70142c0044c258eae070138bbff28</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_36b70142c0044c258eae070138bbff28</doaj_id><sourcerecordid>2644013262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93</originalsourceid><addsrcrecordid>eNpdkc9rFDEUxwex2NL25lkGvHjotm-STH5cxKVVW1hQUM8hk7xss85OxmRG8L8369aybS4JLx8-75u8qnrdwCWlCq764LEhQIER_qI6ISDaRSOIenlwPq7Oc95AWbxtuGSvqmPaUgqNECfVhxvEsV6hSUMY1vVyHFM09h5z7WOqv6a4HmIOuY6-Xs5T3JoJXf3tZxjqm5DRZDyrjrzpM54_7KfVj08fv1_fLlZfPt9dL1cLy4ScFoSCYErsEnClpPMKlfQO0XWMg-UEWsFV24BqO--4ct5J1lHRefS20PS0utt7XTQbPaawNemPjibof4WY1tqkKdgeNeWdgIYRC8CYJa1Eg1AqVHad90QW1_u9a5y7LTqLw5RM_0T69GYI93odf2tZEjLYCd49CFL8NWOe9DZki31vBoxz1oQzVvoRTgr69hm6iXMaylftKNJCQWmhLvaUTTHnhP4xTAN6N2l9OOmCvzl8wCP8f670L0HdonM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642506443</pqid></control><display><type>article</type><title>Deep Learning Approaches for Prognosis of Automated Skin Disease</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Kshirsagar, Pravin R ; Manoharan, Hariprasath ; Shitharth, S ; Alshareef, Abdulrhman M ; Albishry, Nabeel ; Balachandran, Praveen Kumar</creator><creatorcontrib>Kshirsagar, Pravin R ; Manoharan, Hariprasath ; Shitharth, S ; Alshareef, Abdulrhman M ; Albishry, Nabeel ; Balachandran, Praveen Kumar</creatorcontrib><description>Skin problems are among the most common ailments on Earth. Despite its popularity, assessing it is not easy because of the complexities in skin tones, hair colors, and hairstyles. Skin disorders provide a significant public health risk across the globe. They become dangerous when they enter the invasive phase. Dermatological illnesses are a significant concern for the medical community. Because of increased pollution and poor diet, the number of individuals with skin disorders is on the rise at an alarming rate. People often overlook the early signs of skin illness. The current approach for diagnosing and treating skin conditions relies on a biopsy process examined and administered by physicians. Human assessment can be avoided with a hybrid technique, thus providing hopeful findings on time. Approaches to a thorough investigation indicate that deep learning methods might be used to construct frameworks capable of identifying diverse skin conditions. Skin and non-skin tissue must be distinguished to detect skin diseases. This research developed a skin disease classification system using MobileNetV2 and LSTM. For this system, accuracy in skin disease forecasting is the primary aim while ensuring excellent efficiency in storing complete state information for exact forecasts.</description><identifier>ISSN: 2075-1729</identifier><identifier>EISSN: 2075-1729</identifier><identifier>DOI: 10.3390/life12030426</identifier><identifier>PMID: 35330177</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Automation ; Biopsy ; Classification ; Deep learning ; Disorders ; Health risks ; Illnesses ; learning algorithms ; LSTM ; Machine learning ; MobileNetV2 ; Neural networks ; Physicians ; Public health ; Skin ; Skin cancer ; skin disease ; Skin diseases</subject><ispartof>Life (Basel, Switzerland), 2022-03, Vol.12 (3), p.426</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93</citedby><cites>FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93</cites><orcidid>0000-0003-1561-1376 ; 0000-0002-4931-724X ; 0000-0002-1231-4491 ; 0000-0001-5034-3034 ; 0000-0002-0434-8413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642506443/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642506443?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35330177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kshirsagar, Pravin R</creatorcontrib><creatorcontrib>Manoharan, Hariprasath</creatorcontrib><creatorcontrib>Shitharth, S</creatorcontrib><creatorcontrib>Alshareef, Abdulrhman M</creatorcontrib><creatorcontrib>Albishry, Nabeel</creatorcontrib><creatorcontrib>Balachandran, Praveen Kumar</creatorcontrib><title>Deep Learning Approaches for Prognosis of Automated Skin Disease</title><title>Life (Basel, Switzerland)</title><addtitle>Life (Basel)</addtitle><description>Skin problems are among the most common ailments on Earth. Despite its popularity, assessing it is not easy because of the complexities in skin tones, hair colors, and hairstyles. Skin disorders provide a significant public health risk across the globe. They become dangerous when they enter the invasive phase. Dermatological illnesses are a significant concern for the medical community. Because of increased pollution and poor diet, the number of individuals with skin disorders is on the rise at an alarming rate. People often overlook the early signs of skin illness. The current approach for diagnosing and treating skin conditions relies on a biopsy process examined and administered by physicians. Human assessment can be avoided with a hybrid technique, thus providing hopeful findings on time. Approaches to a thorough investigation indicate that deep learning methods might be used to construct frameworks capable of identifying diverse skin conditions. Skin and non-skin tissue must be distinguished to detect skin diseases. This research developed a skin disease classification system using MobileNetV2 and LSTM. For this system, accuracy in skin disease forecasting is the primary aim while ensuring excellent efficiency in storing complete state information for exact forecasts.</description><subject>Automation</subject><subject>Biopsy</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Disorders</subject><subject>Health risks</subject><subject>Illnesses</subject><subject>learning algorithms</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>MobileNetV2</subject><subject>Neural networks</subject><subject>Physicians</subject><subject>Public health</subject><subject>Skin</subject><subject>Skin cancer</subject><subject>skin disease</subject><subject>Skin diseases</subject><issn>2075-1729</issn><issn>2075-1729</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc9rFDEUxwex2NL25lkGvHjotm-STH5cxKVVW1hQUM8hk7xss85OxmRG8L8369aybS4JLx8-75u8qnrdwCWlCq764LEhQIER_qI6ISDaRSOIenlwPq7Oc95AWbxtuGSvqmPaUgqNECfVhxvEsV6hSUMY1vVyHFM09h5z7WOqv6a4HmIOuY6-Xs5T3JoJXf3tZxjqm5DRZDyrjrzpM54_7KfVj08fv1_fLlZfPt9dL1cLy4ScFoSCYErsEnClpPMKlfQO0XWMg-UEWsFV24BqO--4ct5J1lHRefS20PS0utt7XTQbPaawNemPjibof4WY1tqkKdgeNeWdgIYRC8CYJa1Eg1AqVHad90QW1_u9a5y7LTqLw5RM_0T69GYI93odf2tZEjLYCd49CFL8NWOe9DZki31vBoxz1oQzVvoRTgr69hm6iXMaylftKNJCQWmhLvaUTTHnhP4xTAN6N2l9OOmCvzl8wCP8f670L0HdonM</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Kshirsagar, Pravin R</creator><creator>Manoharan, Hariprasath</creator><creator>Shitharth, S</creator><creator>Alshareef, Abdulrhman M</creator><creator>Albishry, Nabeel</creator><creator>Balachandran, Praveen Kumar</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1561-1376</orcidid><orcidid>https://orcid.org/0000-0002-4931-724X</orcidid><orcidid>https://orcid.org/0000-0002-1231-4491</orcidid><orcidid>https://orcid.org/0000-0001-5034-3034</orcidid><orcidid>https://orcid.org/0000-0002-0434-8413</orcidid></search><sort><creationdate>20220315</creationdate><title>Deep Learning Approaches for Prognosis of Automated Skin Disease</title><author>Kshirsagar, Pravin R ; Manoharan, Hariprasath ; Shitharth, S ; Alshareef, Abdulrhman M ; Albishry, Nabeel ; Balachandran, Praveen Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automation</topic><topic>Biopsy</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Disorders</topic><topic>Health risks</topic><topic>Illnesses</topic><topic>learning algorithms</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>MobileNetV2</topic><topic>Neural networks</topic><topic>Physicians</topic><topic>Public health</topic><topic>Skin</topic><topic>Skin cancer</topic><topic>skin disease</topic><topic>Skin diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kshirsagar, Pravin R</creatorcontrib><creatorcontrib>Manoharan, Hariprasath</creatorcontrib><creatorcontrib>Shitharth, S</creatorcontrib><creatorcontrib>Alshareef, Abdulrhman M</creatorcontrib><creatorcontrib>Albishry, Nabeel</creatorcontrib><creatorcontrib>Balachandran, Praveen Kumar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Life (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kshirsagar, Pravin R</au><au>Manoharan, Hariprasath</au><au>Shitharth, S</au><au>Alshareef, Abdulrhman M</au><au>Albishry, Nabeel</au><au>Balachandran, Praveen Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Approaches for Prognosis of Automated Skin Disease</atitle><jtitle>Life (Basel, Switzerland)</jtitle><addtitle>Life (Basel)</addtitle><date>2022-03-15</date><risdate>2022</risdate><volume>12</volume><issue>3</issue><spage>426</spage><pages>426-</pages><issn>2075-1729</issn><eissn>2075-1729</eissn><abstract>Skin problems are among the most common ailments on Earth. Despite its popularity, assessing it is not easy because of the complexities in skin tones, hair colors, and hairstyles. Skin disorders provide a significant public health risk across the globe. They become dangerous when they enter the invasive phase. Dermatological illnesses are a significant concern for the medical community. Because of increased pollution and poor diet, the number of individuals with skin disorders is on the rise at an alarming rate. People often overlook the early signs of skin illness. The current approach for diagnosing and treating skin conditions relies on a biopsy process examined and administered by physicians. Human assessment can be avoided with a hybrid technique, thus providing hopeful findings on time. Approaches to a thorough investigation indicate that deep learning methods might be used to construct frameworks capable of identifying diverse skin conditions. Skin and non-skin tissue must be distinguished to detect skin diseases. This research developed a skin disease classification system using MobileNetV2 and LSTM. For this system, accuracy in skin disease forecasting is the primary aim while ensuring excellent efficiency in storing complete state information for exact forecasts.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35330177</pmid><doi>10.3390/life12030426</doi><orcidid>https://orcid.org/0000-0003-1561-1376</orcidid><orcidid>https://orcid.org/0000-0002-4931-724X</orcidid><orcidid>https://orcid.org/0000-0002-1231-4491</orcidid><orcidid>https://orcid.org/0000-0001-5034-3034</orcidid><orcidid>https://orcid.org/0000-0002-0434-8413</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1729 |
ispartof | Life (Basel, Switzerland), 2022-03, Vol.12 (3), p.426 |
issn | 2075-1729 2075-1729 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_36b70142c0044c258eae070138bbff28 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Automation Biopsy Classification Deep learning Disorders Health risks Illnesses learning algorithms LSTM Machine learning MobileNetV2 Neural networks Physicians Public health Skin Skin cancer skin disease Skin diseases |
title | Deep Learning Approaches for Prognosis of Automated Skin Disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Approaches%20for%20Prognosis%20of%20Automated%20Skin%20Disease&rft.jtitle=Life%20(Basel,%20Switzerland)&rft.au=Kshirsagar,%20Pravin%20R&rft.date=2022-03-15&rft.volume=12&rft.issue=3&rft.spage=426&rft.pages=426-&rft.issn=2075-1729&rft.eissn=2075-1729&rft_id=info:doi/10.3390/life12030426&rft_dat=%3Cproquest_doaj_%3E2644013262%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642506443&rft_id=info:pmid/35330177&rfr_iscdi=true |