Loading…

Deep Learning Approaches for Prognosis of Automated Skin Disease

Skin problems are among the most common ailments on Earth. Despite its popularity, assessing it is not easy because of the complexities in skin tones, hair colors, and hairstyles. Skin disorders provide a significant public health risk across the globe. They become dangerous when they enter the inva...

Full description

Saved in:
Bibliographic Details
Published in:Life (Basel, Switzerland) Switzerland), 2022-03, Vol.12 (3), p.426
Main Authors: Kshirsagar, Pravin R, Manoharan, Hariprasath, Shitharth, S, Alshareef, Abdulrhman M, Albishry, Nabeel, Balachandran, Praveen Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93
cites cdi_FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93
container_end_page
container_issue 3
container_start_page 426
container_title Life (Basel, Switzerland)
container_volume 12
creator Kshirsagar, Pravin R
Manoharan, Hariprasath
Shitharth, S
Alshareef, Abdulrhman M
Albishry, Nabeel
Balachandran, Praveen Kumar
description Skin problems are among the most common ailments on Earth. Despite its popularity, assessing it is not easy because of the complexities in skin tones, hair colors, and hairstyles. Skin disorders provide a significant public health risk across the globe. They become dangerous when they enter the invasive phase. Dermatological illnesses are a significant concern for the medical community. Because of increased pollution and poor diet, the number of individuals with skin disorders is on the rise at an alarming rate. People often overlook the early signs of skin illness. The current approach for diagnosing and treating skin conditions relies on a biopsy process examined and administered by physicians. Human assessment can be avoided with a hybrid technique, thus providing hopeful findings on time. Approaches to a thorough investigation indicate that deep learning methods might be used to construct frameworks capable of identifying diverse skin conditions. Skin and non-skin tissue must be distinguished to detect skin diseases. This research developed a skin disease classification system using MobileNetV2 and LSTM. For this system, accuracy in skin disease forecasting is the primary aim while ensuring excellent efficiency in storing complete state information for exact forecasts.
doi_str_mv 10.3390/life12030426
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_36b70142c0044c258eae070138bbff28</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_36b70142c0044c258eae070138bbff28</doaj_id><sourcerecordid>2644013262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93</originalsourceid><addsrcrecordid>eNpdkc9rFDEUxwex2NL25lkGvHjotm-STH5cxKVVW1hQUM8hk7xss85OxmRG8L8369aybS4JLx8-75u8qnrdwCWlCq764LEhQIER_qI6ISDaRSOIenlwPq7Oc95AWbxtuGSvqmPaUgqNECfVhxvEsV6hSUMY1vVyHFM09h5z7WOqv6a4HmIOuY6-Xs5T3JoJXf3tZxjqm5DRZDyrjrzpM54_7KfVj08fv1_fLlZfPt9dL1cLy4ScFoSCYErsEnClpPMKlfQO0XWMg-UEWsFV24BqO--4ct5J1lHRefS20PS0utt7XTQbPaawNemPjibof4WY1tqkKdgeNeWdgIYRC8CYJa1Eg1AqVHad90QW1_u9a5y7LTqLw5RM_0T69GYI93odf2tZEjLYCd49CFL8NWOe9DZki31vBoxz1oQzVvoRTgr69hm6iXMaylftKNJCQWmhLvaUTTHnhP4xTAN6N2l9OOmCvzl8wCP8f670L0HdonM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2642506443</pqid></control><display><type>article</type><title>Deep Learning Approaches for Prognosis of Automated Skin Disease</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Kshirsagar, Pravin R ; Manoharan, Hariprasath ; Shitharth, S ; Alshareef, Abdulrhman M ; Albishry, Nabeel ; Balachandran, Praveen Kumar</creator><creatorcontrib>Kshirsagar, Pravin R ; Manoharan, Hariprasath ; Shitharth, S ; Alshareef, Abdulrhman M ; Albishry, Nabeel ; Balachandran, Praveen Kumar</creatorcontrib><description>Skin problems are among the most common ailments on Earth. Despite its popularity, assessing it is not easy because of the complexities in skin tones, hair colors, and hairstyles. Skin disorders provide a significant public health risk across the globe. They become dangerous when they enter the invasive phase. Dermatological illnesses are a significant concern for the medical community. Because of increased pollution and poor diet, the number of individuals with skin disorders is on the rise at an alarming rate. People often overlook the early signs of skin illness. The current approach for diagnosing and treating skin conditions relies on a biopsy process examined and administered by physicians. Human assessment can be avoided with a hybrid technique, thus providing hopeful findings on time. Approaches to a thorough investigation indicate that deep learning methods might be used to construct frameworks capable of identifying diverse skin conditions. Skin and non-skin tissue must be distinguished to detect skin diseases. This research developed a skin disease classification system using MobileNetV2 and LSTM. For this system, accuracy in skin disease forecasting is the primary aim while ensuring excellent efficiency in storing complete state information for exact forecasts.</description><identifier>ISSN: 2075-1729</identifier><identifier>EISSN: 2075-1729</identifier><identifier>DOI: 10.3390/life12030426</identifier><identifier>PMID: 35330177</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Automation ; Biopsy ; Classification ; Deep learning ; Disorders ; Health risks ; Illnesses ; learning algorithms ; LSTM ; Machine learning ; MobileNetV2 ; Neural networks ; Physicians ; Public health ; Skin ; Skin cancer ; skin disease ; Skin diseases</subject><ispartof>Life (Basel, Switzerland), 2022-03, Vol.12 (3), p.426</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93</citedby><cites>FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93</cites><orcidid>0000-0003-1561-1376 ; 0000-0002-4931-724X ; 0000-0002-1231-4491 ; 0000-0001-5034-3034 ; 0000-0002-0434-8413</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2642506443/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2642506443?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,25734,27905,27906,36993,36994,44571,53772,53774,74875</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35330177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kshirsagar, Pravin R</creatorcontrib><creatorcontrib>Manoharan, Hariprasath</creatorcontrib><creatorcontrib>Shitharth, S</creatorcontrib><creatorcontrib>Alshareef, Abdulrhman M</creatorcontrib><creatorcontrib>Albishry, Nabeel</creatorcontrib><creatorcontrib>Balachandran, Praveen Kumar</creatorcontrib><title>Deep Learning Approaches for Prognosis of Automated Skin Disease</title><title>Life (Basel, Switzerland)</title><addtitle>Life (Basel)</addtitle><description>Skin problems are among the most common ailments on Earth. Despite its popularity, assessing it is not easy because of the complexities in skin tones, hair colors, and hairstyles. Skin disorders provide a significant public health risk across the globe. They become dangerous when they enter the invasive phase. Dermatological illnesses are a significant concern for the medical community. Because of increased pollution and poor diet, the number of individuals with skin disorders is on the rise at an alarming rate. People often overlook the early signs of skin illness. The current approach for diagnosing and treating skin conditions relies on a biopsy process examined and administered by physicians. Human assessment can be avoided with a hybrid technique, thus providing hopeful findings on time. Approaches to a thorough investigation indicate that deep learning methods might be used to construct frameworks capable of identifying diverse skin conditions. Skin and non-skin tissue must be distinguished to detect skin diseases. This research developed a skin disease classification system using MobileNetV2 and LSTM. For this system, accuracy in skin disease forecasting is the primary aim while ensuring excellent efficiency in storing complete state information for exact forecasts.</description><subject>Automation</subject><subject>Biopsy</subject><subject>Classification</subject><subject>Deep learning</subject><subject>Disorders</subject><subject>Health risks</subject><subject>Illnesses</subject><subject>learning algorithms</subject><subject>LSTM</subject><subject>Machine learning</subject><subject>MobileNetV2</subject><subject>Neural networks</subject><subject>Physicians</subject><subject>Public health</subject><subject>Skin</subject><subject>Skin cancer</subject><subject>skin disease</subject><subject>Skin diseases</subject><issn>2075-1729</issn><issn>2075-1729</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkc9rFDEUxwex2NL25lkGvHjotm-STH5cxKVVW1hQUM8hk7xss85OxmRG8L8369aybS4JLx8-75u8qnrdwCWlCq764LEhQIER_qI6ISDaRSOIenlwPq7Oc95AWbxtuGSvqmPaUgqNECfVhxvEsV6hSUMY1vVyHFM09h5z7WOqv6a4HmIOuY6-Xs5T3JoJXf3tZxjqm5DRZDyrjrzpM54_7KfVj08fv1_fLlZfPt9dL1cLy4ScFoSCYErsEnClpPMKlfQO0XWMg-UEWsFV24BqO--4ct5J1lHRefS20PS0utt7XTQbPaawNemPjibof4WY1tqkKdgeNeWdgIYRC8CYJa1Eg1AqVHad90QW1_u9a5y7LTqLw5RM_0T69GYI93odf2tZEjLYCd49CFL8NWOe9DZki31vBoxz1oQzVvoRTgr69hm6iXMaylftKNJCQWmhLvaUTTHnhP4xTAN6N2l9OOmCvzl8wCP8f670L0HdonM</recordid><startdate>20220315</startdate><enddate>20220315</enddate><creator>Kshirsagar, Pravin R</creator><creator>Manoharan, Hariprasath</creator><creator>Shitharth, S</creator><creator>Alshareef, Abdulrhman M</creator><creator>Albishry, Nabeel</creator><creator>Balachandran, Praveen Kumar</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1561-1376</orcidid><orcidid>https://orcid.org/0000-0002-4931-724X</orcidid><orcidid>https://orcid.org/0000-0002-1231-4491</orcidid><orcidid>https://orcid.org/0000-0001-5034-3034</orcidid><orcidid>https://orcid.org/0000-0002-0434-8413</orcidid></search><sort><creationdate>20220315</creationdate><title>Deep Learning Approaches for Prognosis of Automated Skin Disease</title><author>Kshirsagar, Pravin R ; Manoharan, Hariprasath ; Shitharth, S ; Alshareef, Abdulrhman M ; Albishry, Nabeel ; Balachandran, Praveen Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Automation</topic><topic>Biopsy</topic><topic>Classification</topic><topic>Deep learning</topic><topic>Disorders</topic><topic>Health risks</topic><topic>Illnesses</topic><topic>learning algorithms</topic><topic>LSTM</topic><topic>Machine learning</topic><topic>MobileNetV2</topic><topic>Neural networks</topic><topic>Physicians</topic><topic>Public health</topic><topic>Skin</topic><topic>Skin cancer</topic><topic>skin disease</topic><topic>Skin diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kshirsagar, Pravin R</creatorcontrib><creatorcontrib>Manoharan, Hariprasath</creatorcontrib><creatorcontrib>Shitharth, S</creatorcontrib><creatorcontrib>Alshareef, Abdulrhman M</creatorcontrib><creatorcontrib>Albishry, Nabeel</creatorcontrib><creatorcontrib>Balachandran, Praveen Kumar</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Biological Science Collection</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Life (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kshirsagar, Pravin R</au><au>Manoharan, Hariprasath</au><au>Shitharth, S</au><au>Alshareef, Abdulrhman M</au><au>Albishry, Nabeel</au><au>Balachandran, Praveen Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Learning Approaches for Prognosis of Automated Skin Disease</atitle><jtitle>Life (Basel, Switzerland)</jtitle><addtitle>Life (Basel)</addtitle><date>2022-03-15</date><risdate>2022</risdate><volume>12</volume><issue>3</issue><spage>426</spage><pages>426-</pages><issn>2075-1729</issn><eissn>2075-1729</eissn><abstract>Skin problems are among the most common ailments on Earth. Despite its popularity, assessing it is not easy because of the complexities in skin tones, hair colors, and hairstyles. Skin disorders provide a significant public health risk across the globe. They become dangerous when they enter the invasive phase. Dermatological illnesses are a significant concern for the medical community. Because of increased pollution and poor diet, the number of individuals with skin disorders is on the rise at an alarming rate. People often overlook the early signs of skin illness. The current approach for diagnosing and treating skin conditions relies on a biopsy process examined and administered by physicians. Human assessment can be avoided with a hybrid technique, thus providing hopeful findings on time. Approaches to a thorough investigation indicate that deep learning methods might be used to construct frameworks capable of identifying diverse skin conditions. Skin and non-skin tissue must be distinguished to detect skin diseases. This research developed a skin disease classification system using MobileNetV2 and LSTM. For this system, accuracy in skin disease forecasting is the primary aim while ensuring excellent efficiency in storing complete state information for exact forecasts.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35330177</pmid><doi>10.3390/life12030426</doi><orcidid>https://orcid.org/0000-0003-1561-1376</orcidid><orcidid>https://orcid.org/0000-0002-4931-724X</orcidid><orcidid>https://orcid.org/0000-0002-1231-4491</orcidid><orcidid>https://orcid.org/0000-0001-5034-3034</orcidid><orcidid>https://orcid.org/0000-0002-0434-8413</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-1729
ispartof Life (Basel, Switzerland), 2022-03, Vol.12 (3), p.426
issn 2075-1729
2075-1729
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_36b70142c0044c258eae070138bbff28
source Publicly Available Content (ProQuest); PubMed Central
subjects Automation
Biopsy
Classification
Deep learning
Disorders
Health risks
Illnesses
learning algorithms
LSTM
Machine learning
MobileNetV2
Neural networks
Physicians
Public health
Skin
Skin cancer
skin disease
Skin diseases
title Deep Learning Approaches for Prognosis of Automated Skin Disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T12%3A01%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Learning%20Approaches%20for%20Prognosis%20of%20Automated%20Skin%20Disease&rft.jtitle=Life%20(Basel,%20Switzerland)&rft.au=Kshirsagar,%20Pravin%20R&rft.date=2022-03-15&rft.volume=12&rft.issue=3&rft.spage=426&rft.pages=426-&rft.issn=2075-1729&rft.eissn=2075-1729&rft_id=info:doi/10.3390/life12030426&rft_dat=%3Cproquest_doaj_%3E2644013262%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-230749765166998df9e98fdeedb460c620576951095bfd69dfd84b37bfefcdf93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2642506443&rft_id=info:pmid/35330177&rfr_iscdi=true