Loading…
Numerical Simulation of Transient Multiphase Flow in a Five-Strand Bloom Tundish during Ladle Change
The steel-slag-air multiphase flow in a bloom tundish with five strands during the transient casting of the ladle change was simulated using the Volume of Fluid (VOF) model, and the formation mechanisms of macro-inclusions and the behavior of the steel-slag-air interface during the filling process w...
Saved in:
Published in: | Metals (Basel ) 2018-02, Vol.8 (2), p.146 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The steel-slag-air multiphase flow in a bloom tundish with five strands during the transient casting of the ladle change was simulated using the Volume of Fluid (VOF) model, and the formation mechanisms of macro-inclusions and the behavior of the steel-slag-air interface during the filling process were investigated. Water model experiments were conducted to validate the multiphase model. The results showed that the numerical results of slag entrapment behavior and the exposed area of steel are basically consistent with the experimental results. The flow of molten steel in the tundish is weak except for the region around the stopper rods at the end of the emptying process. Strong fluctuations in liquid level were formed during the filling process, showing two wave crests in front of and behind the shroud in the impact zone, which intensified with the increase in filling time and then declined gradually. Entrapment phenomena and exposure of liquid steel could not be observed before the filling stage. While the entrapped slag droplets mostly float up and can be removed within 40 s during the filling process, the remainder enters the casting zone through the baffle. The maximum exposed area of molten steel is 252 cm2 when the filling time is 4.0 s. |
---|---|
ISSN: | 2075-4701 2075-4701 |
DOI: | 10.3390/met8020146 |