Loading…
Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films
We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of...
Saved in:
Published in: | Light, science & applications science & applications, 2025-01, Vol.14 (1), p.42-11, Article 42 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-c1da76c7aac52ce8426e1898f5d8a0959e28f212531991dc50dc4f3a646f4863 |
container_end_page | 11 |
container_issue | 1 |
container_start_page | 42 |
container_title | Light, science & applications |
container_volume | 14 |
creator | Ahmed, Waqas W. Cao, Haicheng Xu, Changqing Farhat, Mohamed Amin, Muhammad Li, Xiaohang Zhang, Xiangliang Wu, Ying |
description | We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer. To facilitate the device design and improve light absorption without increasing the thickness of the active layer, we develop a deep learning framework, which learns to map from the absorption spectra to the design space. This inverse design strategy helps to tune the absorption for selective spectral functionalities. Our optimized design surpasses the bare silicon planar device, exhibiting a remarkable enhancement of over 100%. Experimental validation confirms the broadband enhancement of light absorption in the proposed configuration. The proposed metascreen absorber holds great potential for light harvesting applications and may be leveraged to improve the light conversion efficiency of ultra-thin silicon solar cells, photodetectors, and optical filters.
Silver nanoring metastructures designed via AI dramatically boost light absorption in ultra-thin silicon films, achieving high efficiency for solar and photonic applications. |
doi_str_mv | 10.1038/s41377-024-01723-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3719c18a511040d98067be53ce7978c8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3719c18a511040d98067be53ce7978c8</doaj_id><sourcerecordid>3152797411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-c1da76c7aac52ce8426e1898f5d8a0959e28f212531991dc50dc4f3a646f4863</originalsourceid><addsrcrecordid>eNp9kkFvFCEUxydGY5vaL-DBTOLFy1QeMAOcjGnUNqnx0jt5y7zZZcPACrMmfvuy3VpbD3KBwI8fPPg3zVtgF8CE_lgkCKU6xmXHQHHR6RfNKWdSdaoX-uWT8UlzXsqW1WYkMK1eNyfCKGUGJU-b8B3dxkdqA2GOPq5bLMWXhcZ2F7DMKXrXzrRgcZkotlPKLcUNRleJVU44rjCOLa5KyrvFp9j62O7DkrFbqrctPnhXZycf5vKmeTVhKHT-0J81t1-_3F5edTc_vl1ffr7pnOR86RyMqAanEF3PHWnJBwJt9NSPGpnpDXE9ceC9AGNgdD0bnZwEDnKYpB7EWXN91I4Jt3aX_Yz5t03o7f1EymuLefEukBUKjAONPQCTbDSaDWpFvXCkjNJOV9eno2u3X800Ooq1tPBM-nwl-o1dp18WQAEMSlXDhwdDTj_3VBY7--IoBIyU9sUKqH-k-dD3FX3_D7pN-xzrUx0oXq8kASrFj5TLqZRM0-NtgNlDNuwxG7Zmw95nwx7qePe0jsctf5JQAXEESl2Ka8p_z_6P9g7M28VP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152797411</pqid></control><display><type>article</type><title>Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ahmed, Waqas W. ; Cao, Haicheng ; Xu, Changqing ; Farhat, Mohamed ; Amin, Muhammad ; Li, Xiaohang ; Zhang, Xiangliang ; Wu, Ying</creator><creatorcontrib>Ahmed, Waqas W. ; Cao, Haicheng ; Xu, Changqing ; Farhat, Mohamed ; Amin, Muhammad ; Li, Xiaohang ; Zhang, Xiangliang ; Wu, Ying</creatorcontrib><description>We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer. To facilitate the device design and improve light absorption without increasing the thickness of the active layer, we develop a deep learning framework, which learns to map from the absorption spectra to the design space. This inverse design strategy helps to tune the absorption for selective spectral functionalities. Our optimized design surpasses the bare silicon planar device, exhibiting a remarkable enhancement of over 100%. Experimental validation confirms the broadband enhancement of light absorption in the proposed configuration. The proposed metascreen absorber holds great potential for light harvesting applications and may be leveraged to improve the light conversion efficiency of ultra-thin silicon solar cells, photodetectors, and optical filters.
Silver nanoring metastructures designed via AI dramatically boost light absorption in ultra-thin silicon films, achieving high efficiency for solar and photonic applications.</description><identifier>ISSN: 2047-7538</identifier><identifier>ISSN: 2095-5545</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/s41377-024-01723-8</identifier><identifier>PMID: 39779674</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/1015 ; 639/766/1130/2799 ; Deep learning ; Embedding ; Lasers ; Light ; Microwaves ; Optical and Electronic Materials ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; RF and Optical Engineering ; Silicon</subject><ispartof>Light, science & applications, 2025-01, Vol.14 (1), p.42-11, Article 42</ispartof><rights>The Author(s) 2025</rights><rights>2025. The Author(s).</rights><rights>Copyright Springer Nature B.V. 2025</rights><rights>The Author(s) 2025 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-c1da76c7aac52ce8426e1898f5d8a0959e28f212531991dc50dc4f3a646f4863</cites><orcidid>0000-0001-5646-0231 ; 0000-0002-7919-1107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3152797411/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3152797411?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39779674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, Waqas W.</creatorcontrib><creatorcontrib>Cao, Haicheng</creatorcontrib><creatorcontrib>Xu, Changqing</creatorcontrib><creatorcontrib>Farhat, Mohamed</creatorcontrib><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Li, Xiaohang</creatorcontrib><creatorcontrib>Zhang, Xiangliang</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><title>Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films</title><title>Light, science & applications</title><addtitle>Light Sci Appl</addtitle><addtitle>Light Sci Appl</addtitle><description>We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer. To facilitate the device design and improve light absorption without increasing the thickness of the active layer, we develop a deep learning framework, which learns to map from the absorption spectra to the design space. This inverse design strategy helps to tune the absorption for selective spectral functionalities. Our optimized design surpasses the bare silicon planar device, exhibiting a remarkable enhancement of over 100%. Experimental validation confirms the broadband enhancement of light absorption in the proposed configuration. The proposed metascreen absorber holds great potential for light harvesting applications and may be leveraged to improve the light conversion efficiency of ultra-thin silicon solar cells, photodetectors, and optical filters.
Silver nanoring metastructures designed via AI dramatically boost light absorption in ultra-thin silicon films, achieving high efficiency for solar and photonic applications.</description><subject>639/624/399/1015</subject><subject>639/766/1130/2799</subject><subject>Deep learning</subject><subject>Embedding</subject><subject>Lasers</subject><subject>Light</subject><subject>Microwaves</subject><subject>Optical and Electronic Materials</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>RF and Optical Engineering</subject><subject>Silicon</subject><issn>2047-7538</issn><issn>2095-5545</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kkFvFCEUxydGY5vaL-DBTOLFy1QeMAOcjGnUNqnx0jt5y7zZZcPACrMmfvuy3VpbD3KBwI8fPPg3zVtgF8CE_lgkCKU6xmXHQHHR6RfNKWdSdaoX-uWT8UlzXsqW1WYkMK1eNyfCKGUGJU-b8B3dxkdqA2GOPq5bLMWXhcZ2F7DMKXrXzrRgcZkotlPKLcUNRleJVU44rjCOLa5KyrvFp9j62O7DkrFbqrctPnhXZycf5vKmeTVhKHT-0J81t1-_3F5edTc_vl1ffr7pnOR86RyMqAanEF3PHWnJBwJt9NSPGpnpDXE9ceC9AGNgdD0bnZwEDnKYpB7EWXN91I4Jt3aX_Yz5t03o7f1EymuLefEukBUKjAONPQCTbDSaDWpFvXCkjNJOV9eno2u3X800Ooq1tPBM-nwl-o1dp18WQAEMSlXDhwdDTj_3VBY7--IoBIyU9sUKqH-k-dD3FX3_D7pN-xzrUx0oXq8kASrFj5TLqZRM0-NtgNlDNuwxG7Zmw95nwx7qePe0jsctf5JQAXEESl2Ka8p_z_6P9g7M28VP</recordid><startdate>20250109</startdate><enddate>20250109</enddate><creator>Ahmed, Waqas W.</creator><creator>Cao, Haicheng</creator><creator>Xu, Changqing</creator><creator>Farhat, Mohamed</creator><creator>Amin, Muhammad</creator><creator>Li, Xiaohang</creator><creator>Zhang, Xiangliang</creator><creator>Wu, Ying</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5646-0231</orcidid><orcidid>https://orcid.org/0000-0002-7919-1107</orcidid></search><sort><creationdate>20250109</creationdate><title>Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films</title><author>Ahmed, Waqas W. ; Cao, Haicheng ; Xu, Changqing ; Farhat, Mohamed ; Amin, Muhammad ; Li, Xiaohang ; Zhang, Xiangliang ; Wu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-c1da76c7aac52ce8426e1898f5d8a0959e28f212531991dc50dc4f3a646f4863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>639/624/399/1015</topic><topic>639/766/1130/2799</topic><topic>Deep learning</topic><topic>Embedding</topic><topic>Lasers</topic><topic>Light</topic><topic>Microwaves</topic><topic>Optical and Electronic Materials</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>RF and Optical Engineering</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Waqas W.</creatorcontrib><creatorcontrib>Cao, Haicheng</creatorcontrib><creatorcontrib>Xu, Changqing</creatorcontrib><creatorcontrib>Farhat, Mohamed</creatorcontrib><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Li, Xiaohang</creatorcontrib><creatorcontrib>Zhang, Xiangliang</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Light, science & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Waqas W.</au><au>Cao, Haicheng</au><au>Xu, Changqing</au><au>Farhat, Mohamed</au><au>Amin, Muhammad</au><au>Li, Xiaohang</au><au>Zhang, Xiangliang</au><au>Wu, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films</atitle><jtitle>Light, science & applications</jtitle><stitle>Light Sci Appl</stitle><addtitle>Light Sci Appl</addtitle><date>2025-01-09</date><risdate>2025</risdate><volume>14</volume><issue>1</issue><spage>42</spage><epage>11</epage><pages>42-11</pages><artnum>42</artnum><issn>2047-7538</issn><issn>2095-5545</issn><eissn>2047-7538</eissn><abstract>We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer. To facilitate the device design and improve light absorption without increasing the thickness of the active layer, we develop a deep learning framework, which learns to map from the absorption spectra to the design space. This inverse design strategy helps to tune the absorption for selective spectral functionalities. Our optimized design surpasses the bare silicon planar device, exhibiting a remarkable enhancement of over 100%. Experimental validation confirms the broadband enhancement of light absorption in the proposed configuration. The proposed metascreen absorber holds great potential for light harvesting applications and may be leveraged to improve the light conversion efficiency of ultra-thin silicon solar cells, photodetectors, and optical filters.
Silver nanoring metastructures designed via AI dramatically boost light absorption in ultra-thin silicon films, achieving high efficiency for solar and photonic applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39779674</pmid><doi>10.1038/s41377-024-01723-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5646-0231</orcidid><orcidid>https://orcid.org/0000-0002-7919-1107</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2047-7538 |
ispartof | Light, science & applications, 2025-01, Vol.14 (1), p.42-11, Article 42 |
issn | 2047-7538 2095-5545 2047-7538 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3719c18a511040d98067be53ce7978c8 |
source | PubMed (Medline); Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/624/399/1015 639/766/1130/2799 Deep learning Embedding Lasers Light Microwaves Optical and Electronic Materials Optical Devices Optics Photonics Physics Physics and Astronomy RF and Optical Engineering Silicon |
title | Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20assisted%20plasmonic%20metascreen%20for%20enhanced%20broadband%20absorption%20in%20ultra-thin%20silicon%20films&rft.jtitle=Light,%20science%20&%20applications&rft.au=Ahmed,%20Waqas%20W.&rft.date=2025-01-09&rft.volume=14&rft.issue=1&rft.spage=42&rft.epage=11&rft.pages=42-11&rft.artnum=42&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/s41377-024-01723-8&rft_dat=%3Cproquest_doaj_%3E3152797411%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-c1da76c7aac52ce8426e1898f5d8a0959e28f212531991dc50dc4f3a646f4863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3152797411&rft_id=info:pmid/39779674&rfr_iscdi=true |