Loading…

Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films

We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of...

Full description

Saved in:
Bibliographic Details
Published in:Light, science & applications science & applications, 2025-01, Vol.14 (1), p.42-11, Article 42
Main Authors: Ahmed, Waqas W., Cao, Haicheng, Xu, Changqing, Farhat, Mohamed, Amin, Muhammad, Li, Xiaohang, Zhang, Xiangliang, Wu, Ying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c422t-c1da76c7aac52ce8426e1898f5d8a0959e28f212531991dc50dc4f3a646f4863
container_end_page 11
container_issue 1
container_start_page 42
container_title Light, science & applications
container_volume 14
creator Ahmed, Waqas W.
Cao, Haicheng
Xu, Changqing
Farhat, Mohamed
Amin, Muhammad
Li, Xiaohang
Zhang, Xiangliang
Wu, Ying
description We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer. To facilitate the device design and improve light absorption without increasing the thickness of the active layer, we develop a deep learning framework, which learns to map from the absorption spectra to the design space. This inverse design strategy helps to tune the absorption for selective spectral functionalities. Our optimized design surpasses the bare silicon planar device, exhibiting a remarkable enhancement of over 100%. Experimental validation confirms the broadband enhancement of light absorption in the proposed configuration. The proposed metascreen absorber holds great potential for light harvesting applications and may be leveraged to improve the light conversion efficiency of ultra-thin silicon solar cells, photodetectors, and optical filters. Silver nanoring metastructures designed via AI dramatically boost light absorption in ultra-thin silicon films, achieving high efficiency for solar and photonic applications.
doi_str_mv 10.1038/s41377-024-01723-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3719c18a511040d98067be53ce7978c8</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3719c18a511040d98067be53ce7978c8</doaj_id><sourcerecordid>3152797411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-c1da76c7aac52ce8426e1898f5d8a0959e28f212531991dc50dc4f3a646f4863</originalsourceid><addsrcrecordid>eNp9kkFvFCEUxydGY5vaL-DBTOLFy1QeMAOcjGnUNqnx0jt5y7zZZcPACrMmfvuy3VpbD3KBwI8fPPg3zVtgF8CE_lgkCKU6xmXHQHHR6RfNKWdSdaoX-uWT8UlzXsqW1WYkMK1eNyfCKGUGJU-b8B3dxkdqA2GOPq5bLMWXhcZ2F7DMKXrXzrRgcZkotlPKLcUNRleJVU44rjCOLa5KyrvFp9j62O7DkrFbqrctPnhXZycf5vKmeTVhKHT-0J81t1-_3F5edTc_vl1ffr7pnOR86RyMqAanEF3PHWnJBwJt9NSPGpnpDXE9ceC9AGNgdD0bnZwEDnKYpB7EWXN91I4Jt3aX_Yz5t03o7f1EymuLefEukBUKjAONPQCTbDSaDWpFvXCkjNJOV9eno2u3X800Ooq1tPBM-nwl-o1dp18WQAEMSlXDhwdDTj_3VBY7--IoBIyU9sUKqH-k-dD3FX3_D7pN-xzrUx0oXq8kASrFj5TLqZRM0-NtgNlDNuwxG7Zmw95nwx7qePe0jsctf5JQAXEESl2Ka8p_z_6P9g7M28VP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3152797411</pqid></control><display><type>article</type><title>Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ahmed, Waqas W. ; Cao, Haicheng ; Xu, Changqing ; Farhat, Mohamed ; Amin, Muhammad ; Li, Xiaohang ; Zhang, Xiangliang ; Wu, Ying</creator><creatorcontrib>Ahmed, Waqas W. ; Cao, Haicheng ; Xu, Changqing ; Farhat, Mohamed ; Amin, Muhammad ; Li, Xiaohang ; Zhang, Xiangliang ; Wu, Ying</creatorcontrib><description>We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer. To facilitate the device design and improve light absorption without increasing the thickness of the active layer, we develop a deep learning framework, which learns to map from the absorption spectra to the design space. This inverse design strategy helps to tune the absorption for selective spectral functionalities. Our optimized design surpasses the bare silicon planar device, exhibiting a remarkable enhancement of over 100%. Experimental validation confirms the broadband enhancement of light absorption in the proposed configuration. The proposed metascreen absorber holds great potential for light harvesting applications and may be leveraged to improve the light conversion efficiency of ultra-thin silicon solar cells, photodetectors, and optical filters. Silver nanoring metastructures designed via AI dramatically boost light absorption in ultra-thin silicon films, achieving high efficiency for solar and photonic applications.</description><identifier>ISSN: 2047-7538</identifier><identifier>ISSN: 2095-5545</identifier><identifier>EISSN: 2047-7538</identifier><identifier>DOI: 10.1038/s41377-024-01723-8</identifier><identifier>PMID: 39779674</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/1015 ; 639/766/1130/2799 ; Deep learning ; Embedding ; Lasers ; Light ; Microwaves ; Optical and Electronic Materials ; Optical Devices ; Optics ; Photonics ; Physics ; Physics and Astronomy ; RF and Optical Engineering ; Silicon</subject><ispartof>Light, science &amp; applications, 2025-01, Vol.14 (1), p.42-11, Article 42</ispartof><rights>The Author(s) 2025</rights><rights>2025. The Author(s).</rights><rights>Copyright Springer Nature B.V. 2025</rights><rights>The Author(s) 2025 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-c1da76c7aac52ce8426e1898f5d8a0959e28f212531991dc50dc4f3a646f4863</cites><orcidid>0000-0001-5646-0231 ; 0000-0002-7919-1107</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3152797411/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3152797411?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39779674$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ahmed, Waqas W.</creatorcontrib><creatorcontrib>Cao, Haicheng</creatorcontrib><creatorcontrib>Xu, Changqing</creatorcontrib><creatorcontrib>Farhat, Mohamed</creatorcontrib><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Li, Xiaohang</creatorcontrib><creatorcontrib>Zhang, Xiangliang</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><title>Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films</title><title>Light, science &amp; applications</title><addtitle>Light Sci Appl</addtitle><addtitle>Light Sci Appl</addtitle><description>We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer. To facilitate the device design and improve light absorption without increasing the thickness of the active layer, we develop a deep learning framework, which learns to map from the absorption spectra to the design space. This inverse design strategy helps to tune the absorption for selective spectral functionalities. Our optimized design surpasses the bare silicon planar device, exhibiting a remarkable enhancement of over 100%. Experimental validation confirms the broadband enhancement of light absorption in the proposed configuration. The proposed metascreen absorber holds great potential for light harvesting applications and may be leveraged to improve the light conversion efficiency of ultra-thin silicon solar cells, photodetectors, and optical filters. Silver nanoring metastructures designed via AI dramatically boost light absorption in ultra-thin silicon films, achieving high efficiency for solar and photonic applications.</description><subject>639/624/399/1015</subject><subject>639/766/1130/2799</subject><subject>Deep learning</subject><subject>Embedding</subject><subject>Lasers</subject><subject>Light</subject><subject>Microwaves</subject><subject>Optical and Electronic Materials</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>RF and Optical Engineering</subject><subject>Silicon</subject><issn>2047-7538</issn><issn>2095-5545</issn><issn>2047-7538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kkFvFCEUxydGY5vaL-DBTOLFy1QeMAOcjGnUNqnx0jt5y7zZZcPACrMmfvuy3VpbD3KBwI8fPPg3zVtgF8CE_lgkCKU6xmXHQHHR6RfNKWdSdaoX-uWT8UlzXsqW1WYkMK1eNyfCKGUGJU-b8B3dxkdqA2GOPq5bLMWXhcZ2F7DMKXrXzrRgcZkotlPKLcUNRleJVU44rjCOLa5KyrvFp9j62O7DkrFbqrctPnhXZycf5vKmeTVhKHT-0J81t1-_3F5edTc_vl1ffr7pnOR86RyMqAanEF3PHWnJBwJt9NSPGpnpDXE9ceC9AGNgdD0bnZwEDnKYpB7EWXN91I4Jt3aX_Yz5t03o7f1EymuLefEukBUKjAONPQCTbDSaDWpFvXCkjNJOV9eno2u3X800Ooq1tPBM-nwl-o1dp18WQAEMSlXDhwdDTj_3VBY7--IoBIyU9sUKqH-k-dD3FX3_D7pN-xzrUx0oXq8kASrFj5TLqZRM0-NtgNlDNuwxG7Zmw95nwx7qePe0jsctf5JQAXEESl2Ka8p_z_6P9g7M28VP</recordid><startdate>20250109</startdate><enddate>20250109</enddate><creator>Ahmed, Waqas W.</creator><creator>Cao, Haicheng</creator><creator>Xu, Changqing</creator><creator>Farhat, Mohamed</creator><creator>Amin, Muhammad</creator><creator>Li, Xiaohang</creator><creator>Zhang, Xiangliang</creator><creator>Wu, Ying</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5646-0231</orcidid><orcidid>https://orcid.org/0000-0002-7919-1107</orcidid></search><sort><creationdate>20250109</creationdate><title>Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films</title><author>Ahmed, Waqas W. ; Cao, Haicheng ; Xu, Changqing ; Farhat, Mohamed ; Amin, Muhammad ; Li, Xiaohang ; Zhang, Xiangliang ; Wu, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-c1da76c7aac52ce8426e1898f5d8a0959e28f212531991dc50dc4f3a646f4863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>639/624/399/1015</topic><topic>639/766/1130/2799</topic><topic>Deep learning</topic><topic>Embedding</topic><topic>Lasers</topic><topic>Light</topic><topic>Microwaves</topic><topic>Optical and Electronic Materials</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>RF and Optical Engineering</topic><topic>Silicon</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmed, Waqas W.</creatorcontrib><creatorcontrib>Cao, Haicheng</creatorcontrib><creatorcontrib>Xu, Changqing</creatorcontrib><creatorcontrib>Farhat, Mohamed</creatorcontrib><creatorcontrib>Amin, Muhammad</creatorcontrib><creatorcontrib>Li, Xiaohang</creatorcontrib><creatorcontrib>Zhang, Xiangliang</creatorcontrib><creatorcontrib>Wu, Ying</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Light, science &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmed, Waqas W.</au><au>Cao, Haicheng</au><au>Xu, Changqing</au><au>Farhat, Mohamed</au><au>Amin, Muhammad</au><au>Li, Xiaohang</au><au>Zhang, Xiangliang</au><au>Wu, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films</atitle><jtitle>Light, science &amp; applications</jtitle><stitle>Light Sci Appl</stitle><addtitle>Light Sci Appl</addtitle><date>2025-01-09</date><risdate>2025</risdate><volume>14</volume><issue>1</issue><spage>42</spage><epage>11</epage><pages>42-11</pages><artnum>42</artnum><issn>2047-7538</issn><issn>2095-5545</issn><eissn>2047-7538</eissn><abstract>We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer. To facilitate the device design and improve light absorption without increasing the thickness of the active layer, we develop a deep learning framework, which learns to map from the absorption spectra to the design space. This inverse design strategy helps to tune the absorption for selective spectral functionalities. Our optimized design surpasses the bare silicon planar device, exhibiting a remarkable enhancement of over 100%. Experimental validation confirms the broadband enhancement of light absorption in the proposed configuration. The proposed metascreen absorber holds great potential for light harvesting applications and may be leveraged to improve the light conversion efficiency of ultra-thin silicon solar cells, photodetectors, and optical filters. Silver nanoring metastructures designed via AI dramatically boost light absorption in ultra-thin silicon films, achieving high efficiency for solar and photonic applications.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39779674</pmid><doi>10.1038/s41377-024-01723-8</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-5646-0231</orcidid><orcidid>https://orcid.org/0000-0002-7919-1107</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2047-7538
ispartof Light, science & applications, 2025-01, Vol.14 (1), p.42-11, Article 42
issn 2047-7538
2095-5545
2047-7538
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3719c18a511040d98067be53ce7978c8
source PubMed (Medline); Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/624/399/1015
639/766/1130/2799
Deep learning
Embedding
Lasers
Light
Microwaves
Optical and Electronic Materials
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
RF and Optical Engineering
Silicon
title Machine learning assisted plasmonic metascreen for enhanced broadband absorption in ultra-thin silicon films
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T22%3A56%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20assisted%20plasmonic%20metascreen%20for%20enhanced%20broadband%20absorption%20in%20ultra-thin%20silicon%20films&rft.jtitle=Light,%20science%20&%20applications&rft.au=Ahmed,%20Waqas%20W.&rft.date=2025-01-09&rft.volume=14&rft.issue=1&rft.spage=42&rft.epage=11&rft.pages=42-11&rft.artnum=42&rft.issn=2047-7538&rft.eissn=2047-7538&rft_id=info:doi/10.1038/s41377-024-01723-8&rft_dat=%3Cproquest_doaj_%3E3152797411%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-c1da76c7aac52ce8426e1898f5d8a0959e28f212531991dc50dc4f3a646f4863%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3152797411&rft_id=info:pmid/39779674&rfr_iscdi=true