Loading…

Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells

Cellular adaptation to hypoxia is a protective mechanism for neurons and relevant to cancer. Treatment with desferrioxamine (DFO) to induce hypoxia reduced the viability of human neuronal NMB cells. Surviving/attached cells exhibited profound increases of expression of the human kappa-opioid recepto...

Full description

Saved in:
Bibliographic Details
Published in:International journal of molecular sciences 2017-01, Vol.18 (1), p.211-211
Main Authors: Babcock, Jennifer, Herrera, Alberto, Coricor, George, Karch, Christopher, Liu, Alexander H, Rivera-Gines, Aida, Ko, Jane L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c511t-9ac4f950bbb160a6f1d56f58bb359b1cc60b54d29835ebba365cb535d58500b93
cites cdi_FETCH-LOGICAL-c511t-9ac4f950bbb160a6f1d56f58bb359b1cc60b54d29835ebba365cb535d58500b93
container_end_page 211
container_issue 1
container_start_page 211
container_title International journal of molecular sciences
container_volume 18
creator Babcock, Jennifer
Herrera, Alberto
Coricor, George
Karch, Christopher
Liu, Alexander H
Rivera-Gines, Aida
Ko, Jane L
description Cellular adaptation to hypoxia is a protective mechanism for neurons and relevant to cancer. Treatment with desferrioxamine (DFO) to induce hypoxia reduced the viability of human neuronal NMB cells. Surviving/attached cells exhibited profound increases of expression of the human kappa-opioid receptor (hKOR) and hypoxia inducible factor-1α (HIF-1α). The functional relationship between hKOR and HIF-1α was investigated using RT-PCR, Western blot, luciferase reporter, mutagenesis, siRNA and receptor-ligand binding assays. In surviving neurons, DFO increased HIF-1α expression and its amount in the nucleus. DFO also dramatically increased hKOR expression. Two (designated as HIFC and D) out of four potential HIF response elements of the gene (HIFA-D) synergistically mediated the DFO response. Mutation of both elements completely abolished the DFO-induced effect. The CD11 plasmid (containing HIFC and D with an 11 bp spacing) produced greater augmentation than that of the CD17 plasmid (HIFC and D with a 17 bp-spacing), suggesting that a proper topological interaction of these elements synergistically enhanced the promoter activity. HIF-1α siRNA knocked down the increase of endogenous HIF-1α messages and diminished the DFO-induced increase of hKOR expression. Increased hKOR expression resulted in the up-regulation of hKOR protein. In conclusion, the adaptation of neuronal hKOR under hypoxia was governed by HIF-1, revealing a new mechanism of hKOR regulation.
doi_str_mv 10.3390/ijms18010211
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_371c881068e240ec85990da2bc2da1b2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_371c881068e240ec85990da2bc2da1b2</doaj_id><sourcerecordid>1868301231</sourcerecordid><originalsourceid>FETCH-LOGICAL-c511t-9ac4f950bbb160a6f1d56f58bb359b1cc60b54d29835ebba365cb535d58500b93</originalsourceid><addsrcrecordid>eNqNkk9v0zAYhyMEYmNw44wsceFAwK8dJ84FCcpYK9ZNQnCO_OdN5yqxMzuZui_A56Zdx9Rx4mJb9uPHr1_9suw10A-c1_SjW_cJJAXKAJ5kx1AwllNaVk8P1kfZi5TWlDLORP08O2ISoCoreZz9XqK5Ut6lnpyFG4ze-RWZT73y5LsaBpVfDi44S36gwWEMkZxuhogpueDJ5C1G8hVTizG6sFG985gvvJ0MWjK_HcLGGbJ0_XacBW_duLvlPLnAKQavOnKx_EJm2HXpZfasVV3CV_fzSfbr2-nP2Tw_vzxbzD6f50YAjHmtTNHWgmqtoaSqbMGKshVSay5qDcaUVIvCslpygVorXgqjBRdWSEGprvlJtth7bVDrZoiuV_G2Cco1dxshrhoVR2c6bHgFRkqgpURWUDRS1DW1imnDrALNtq5Pe9cw6R6tQT9G1T2SPj7x7qpZhZtGsLqSBd0K3t0LYrieMI1N75LZtkN5DFNqQJaSU2Ac_geFEmQBu7Le_oOuwxS33b6jGFApqt3b7_eUiSGliO1D3UCbXa6aw1xt8TeHf32A_waJ_wH2esoC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862108570</pqid></control><display><type>article</type><title>Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells</title><source>PubMed Central Free</source><source>Publicly Available Content Database</source><creator>Babcock, Jennifer ; Herrera, Alberto ; Coricor, George ; Karch, Christopher ; Liu, Alexander H ; Rivera-Gines, Aida ; Ko, Jane L</creator><creatorcontrib>Babcock, Jennifer ; Herrera, Alberto ; Coricor, George ; Karch, Christopher ; Liu, Alexander H ; Rivera-Gines, Aida ; Ko, Jane L</creatorcontrib><description>Cellular adaptation to hypoxia is a protective mechanism for neurons and relevant to cancer. Treatment with desferrioxamine (DFO) to induce hypoxia reduced the viability of human neuronal NMB cells. Surviving/attached cells exhibited profound increases of expression of the human kappa-opioid receptor (hKOR) and hypoxia inducible factor-1α (HIF-1α). The functional relationship between hKOR and HIF-1α was investigated using RT-PCR, Western blot, luciferase reporter, mutagenesis, siRNA and receptor-ligand binding assays. In surviving neurons, DFO increased HIF-1α expression and its amount in the nucleus. DFO also dramatically increased hKOR expression. Two (designated as HIFC and D) out of four potential HIF response elements of the gene (HIFA-D) synergistically mediated the DFO response. Mutation of both elements completely abolished the DFO-induced effect. The CD11 plasmid (containing HIFC and D with an 11 bp spacing) produced greater augmentation than that of the CD17 plasmid (HIFC and D with a 17 bp-spacing), suggesting that a proper topological interaction of these elements synergistically enhanced the promoter activity. HIF-1α siRNA knocked down the increase of endogenous HIF-1α messages and diminished the DFO-induced increase of hKOR expression. Increased hKOR expression resulted in the up-regulation of hKOR protein. In conclusion, the adaptation of neuronal hKOR under hypoxia was governed by HIF-1, revealing a new mechanism of hKOR regulation.</description><identifier>ISSN: 1422-0067</identifier><identifier>ISSN: 1661-6596</identifier><identifier>EISSN: 1422-0067</identifier><identifier>DOI: 10.3390/ijms18010211</identifier><identifier>PMID: 28117678</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Adaptation ; Basic Helix-Loop-Helix Transcription Factors - genetics ; Basic Helix-Loop-Helix Transcription Factors - metabolism ; Blotting, Western ; Cell Adhesion - genetics ; Cell Hypoxia ; Cell Line, Tumor ; Cell Survival - genetics ; Deferoxamine ; Deferoxamine - pharmacology ; desferrioxamine ; Gene Expression Regulation, Neoplastic - drug effects ; HIF response elements ; human kappa-opioid receptor ; human NMB neuronal cells ; Humans ; Hypoxia ; hypoxia inducible factor-1α ; Hypoxia-inducible factor 1 ; Hypoxia-Inducible Factor 1, alpha Subunit - genetics ; Hypoxia-Inducible Factor 1, alpha Subunit - metabolism ; Hypoxia-inducible factor 1a ; Mutagenesis ; Mutation ; Narcotics ; Neuroblastoma - genetics ; Neuroblastoma - metabolism ; Neuroblastoma - pathology ; Neurons ; Opioid receptors (type kappa) ; Polymerase chain reaction ; Receptors, Opioid, kappa - genetics ; Receptors, Opioid, kappa - metabolism ; Regulatory sequences ; Response Elements - genetics ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Interference ; Siderophores - pharmacology ; siRNA</subject><ispartof>International journal of molecular sciences, 2017-01, Vol.18 (1), p.211-211</ispartof><rights>Copyright MDPI AG 2017</rights><rights>2017 by the authors; licensee MDPI, Basel, Switzerland. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c511t-9ac4f950bbb160a6f1d56f58bb359b1cc60b54d29835ebba365cb535d58500b93</citedby><cites>FETCH-LOGICAL-c511t-9ac4f950bbb160a6f1d56f58bb359b1cc60b54d29835ebba365cb535d58500b93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1862108570/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1862108570?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28117678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Babcock, Jennifer</creatorcontrib><creatorcontrib>Herrera, Alberto</creatorcontrib><creatorcontrib>Coricor, George</creatorcontrib><creatorcontrib>Karch, Christopher</creatorcontrib><creatorcontrib>Liu, Alexander H</creatorcontrib><creatorcontrib>Rivera-Gines, Aida</creatorcontrib><creatorcontrib>Ko, Jane L</creatorcontrib><title>Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells</title><title>International journal of molecular sciences</title><addtitle>Int J Mol Sci</addtitle><description>Cellular adaptation to hypoxia is a protective mechanism for neurons and relevant to cancer. Treatment with desferrioxamine (DFO) to induce hypoxia reduced the viability of human neuronal NMB cells. Surviving/attached cells exhibited profound increases of expression of the human kappa-opioid receptor (hKOR) and hypoxia inducible factor-1α (HIF-1α). The functional relationship between hKOR and HIF-1α was investigated using RT-PCR, Western blot, luciferase reporter, mutagenesis, siRNA and receptor-ligand binding assays. In surviving neurons, DFO increased HIF-1α expression and its amount in the nucleus. DFO also dramatically increased hKOR expression. Two (designated as HIFC and D) out of four potential HIF response elements of the gene (HIFA-D) synergistically mediated the DFO response. Mutation of both elements completely abolished the DFO-induced effect. The CD11 plasmid (containing HIFC and D with an 11 bp spacing) produced greater augmentation than that of the CD17 plasmid (HIFC and D with a 17 bp-spacing), suggesting that a proper topological interaction of these elements synergistically enhanced the promoter activity. HIF-1α siRNA knocked down the increase of endogenous HIF-1α messages and diminished the DFO-induced increase of hKOR expression. Increased hKOR expression resulted in the up-regulation of hKOR protein. In conclusion, the adaptation of neuronal hKOR under hypoxia was governed by HIF-1, revealing a new mechanism of hKOR regulation.</description><subject>Adaptation</subject><subject>Basic Helix-Loop-Helix Transcription Factors - genetics</subject><subject>Basic Helix-Loop-Helix Transcription Factors - metabolism</subject><subject>Blotting, Western</subject><subject>Cell Adhesion - genetics</subject><subject>Cell Hypoxia</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - genetics</subject><subject>Deferoxamine</subject><subject>Deferoxamine - pharmacology</subject><subject>desferrioxamine</subject><subject>Gene Expression Regulation, Neoplastic - drug effects</subject><subject>HIF response elements</subject><subject>human kappa-opioid receptor</subject><subject>human NMB neuronal cells</subject><subject>Humans</subject><subject>Hypoxia</subject><subject>hypoxia inducible factor-1α</subject><subject>Hypoxia-inducible factor 1</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</subject><subject>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</subject><subject>Hypoxia-inducible factor 1a</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>Narcotics</subject><subject>Neuroblastoma - genetics</subject><subject>Neuroblastoma - metabolism</subject><subject>Neuroblastoma - pathology</subject><subject>Neurons</subject><subject>Opioid receptors (type kappa)</subject><subject>Polymerase chain reaction</subject><subject>Receptors, Opioid, kappa - genetics</subject><subject>Receptors, Opioid, kappa - metabolism</subject><subject>Regulatory sequences</subject><subject>Response Elements - genetics</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Interference</subject><subject>Siderophores - pharmacology</subject><subject>siRNA</subject><issn>1422-0067</issn><issn>1661-6596</issn><issn>1422-0067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk9v0zAYhyMEYmNw44wsceFAwK8dJ84FCcpYK9ZNQnCO_OdN5yqxMzuZui_A56Zdx9Rx4mJb9uPHr1_9suw10A-c1_SjW_cJJAXKAJ5kx1AwllNaVk8P1kfZi5TWlDLORP08O2ISoCoreZz9XqK5Ut6lnpyFG4ze-RWZT73y5LsaBpVfDi44S36gwWEMkZxuhogpueDJ5C1G8hVTizG6sFG985gvvJ0MWjK_HcLGGbJ0_XacBW_duLvlPLnAKQavOnKx_EJm2HXpZfasVV3CV_fzSfbr2-nP2Tw_vzxbzD6f50YAjHmtTNHWgmqtoaSqbMGKshVSay5qDcaUVIvCslpygVorXgqjBRdWSEGprvlJtth7bVDrZoiuV_G2Cco1dxshrhoVR2c6bHgFRkqgpURWUDRS1DW1imnDrALNtq5Pe9cw6R6tQT9G1T2SPj7x7qpZhZtGsLqSBd0K3t0LYrieMI1N75LZtkN5DFNqQJaSU2Ac_geFEmQBu7Le_oOuwxS33b6jGFApqt3b7_eUiSGliO1D3UCbXa6aw1xt8TeHf32A_waJ_wH2esoC</recordid><startdate>20170120</startdate><enddate>20170120</enddate><creator>Babcock, Jennifer</creator><creator>Herrera, Alberto</creator><creator>Coricor, George</creator><creator>Karch, Christopher</creator><creator>Liu, Alexander H</creator><creator>Rivera-Gines, Aida</creator><creator>Ko, Jane L</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7TK</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20170120</creationdate><title>Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells</title><author>Babcock, Jennifer ; Herrera, Alberto ; Coricor, George ; Karch, Christopher ; Liu, Alexander H ; Rivera-Gines, Aida ; Ko, Jane L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c511t-9ac4f950bbb160a6f1d56f58bb359b1cc60b54d29835ebba365cb535d58500b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptation</topic><topic>Basic Helix-Loop-Helix Transcription Factors - genetics</topic><topic>Basic Helix-Loop-Helix Transcription Factors - metabolism</topic><topic>Blotting, Western</topic><topic>Cell Adhesion - genetics</topic><topic>Cell Hypoxia</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - genetics</topic><topic>Deferoxamine</topic><topic>Deferoxamine - pharmacology</topic><topic>desferrioxamine</topic><topic>Gene Expression Regulation, Neoplastic - drug effects</topic><topic>HIF response elements</topic><topic>human kappa-opioid receptor</topic><topic>human NMB neuronal cells</topic><topic>Humans</topic><topic>Hypoxia</topic><topic>hypoxia inducible factor-1α</topic><topic>Hypoxia-inducible factor 1</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - genetics</topic><topic>Hypoxia-Inducible Factor 1, alpha Subunit - metabolism</topic><topic>Hypoxia-inducible factor 1a</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>Narcotics</topic><topic>Neuroblastoma - genetics</topic><topic>Neuroblastoma - metabolism</topic><topic>Neuroblastoma - pathology</topic><topic>Neurons</topic><topic>Opioid receptors (type kappa)</topic><topic>Polymerase chain reaction</topic><topic>Receptors, Opioid, kappa - genetics</topic><topic>Receptors, Opioid, kappa - metabolism</topic><topic>Regulatory sequences</topic><topic>Response Elements - genetics</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Interference</topic><topic>Siderophores - pharmacology</topic><topic>siRNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Babcock, Jennifer</creatorcontrib><creatorcontrib>Herrera, Alberto</creatorcontrib><creatorcontrib>Coricor, George</creatorcontrib><creatorcontrib>Karch, Christopher</creatorcontrib><creatorcontrib>Liu, Alexander H</creatorcontrib><creatorcontrib>Rivera-Gines, Aida</creatorcontrib><creatorcontrib>Ko, Jane L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest_Research Library</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Neurosciences Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>International journal of molecular sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Babcock, Jennifer</au><au>Herrera, Alberto</au><au>Coricor, George</au><au>Karch, Christopher</au><au>Liu, Alexander H</au><au>Rivera-Gines, Aida</au><au>Ko, Jane L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells</atitle><jtitle>International journal of molecular sciences</jtitle><addtitle>Int J Mol Sci</addtitle><date>2017-01-20</date><risdate>2017</risdate><volume>18</volume><issue>1</issue><spage>211</spage><epage>211</epage><pages>211-211</pages><issn>1422-0067</issn><issn>1661-6596</issn><eissn>1422-0067</eissn><abstract>Cellular adaptation to hypoxia is a protective mechanism for neurons and relevant to cancer. Treatment with desferrioxamine (DFO) to induce hypoxia reduced the viability of human neuronal NMB cells. Surviving/attached cells exhibited profound increases of expression of the human kappa-opioid receptor (hKOR) and hypoxia inducible factor-1α (HIF-1α). The functional relationship between hKOR and HIF-1α was investigated using RT-PCR, Western blot, luciferase reporter, mutagenesis, siRNA and receptor-ligand binding assays. In surviving neurons, DFO increased HIF-1α expression and its amount in the nucleus. DFO also dramatically increased hKOR expression. Two (designated as HIFC and D) out of four potential HIF response elements of the gene (HIFA-D) synergistically mediated the DFO response. Mutation of both elements completely abolished the DFO-induced effect. The CD11 plasmid (containing HIFC and D with an 11 bp spacing) produced greater augmentation than that of the CD17 plasmid (HIFC and D with a 17 bp-spacing), suggesting that a proper topological interaction of these elements synergistically enhanced the promoter activity. HIF-1α siRNA knocked down the increase of endogenous HIF-1α messages and diminished the DFO-induced increase of hKOR expression. Increased hKOR expression resulted in the up-regulation of hKOR protein. In conclusion, the adaptation of neuronal hKOR under hypoxia was governed by HIF-1, revealing a new mechanism of hKOR regulation.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>28117678</pmid><doi>10.3390/ijms18010211</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1422-0067
ispartof International journal of molecular sciences, 2017-01, Vol.18 (1), p.211-211
issn 1422-0067
1661-6596
1422-0067
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_371c881068e240ec85990da2bc2da1b2
source PubMed Central Free; Publicly Available Content Database
subjects Adaptation
Basic Helix-Loop-Helix Transcription Factors - genetics
Basic Helix-Loop-Helix Transcription Factors - metabolism
Blotting, Western
Cell Adhesion - genetics
Cell Hypoxia
Cell Line, Tumor
Cell Survival - genetics
Deferoxamine
Deferoxamine - pharmacology
desferrioxamine
Gene Expression Regulation, Neoplastic - drug effects
HIF response elements
human kappa-opioid receptor
human NMB neuronal cells
Humans
Hypoxia
hypoxia inducible factor-1α
Hypoxia-inducible factor 1
Hypoxia-Inducible Factor 1, alpha Subunit - genetics
Hypoxia-Inducible Factor 1, alpha Subunit - metabolism
Hypoxia-inducible factor 1a
Mutagenesis
Mutation
Narcotics
Neuroblastoma - genetics
Neuroblastoma - metabolism
Neuroblastoma - pathology
Neurons
Opioid receptors (type kappa)
Polymerase chain reaction
Receptors, Opioid, kappa - genetics
Receptors, Opioid, kappa - metabolism
Regulatory sequences
Response Elements - genetics
Reverse Transcriptase Polymerase Chain Reaction
RNA Interference
Siderophores - pharmacology
siRNA
title Mechanism Governing Human Kappa-Opioid Receptor Expression under Desferrioxamine-Induced Hypoxic Mimic Condition in Neuronal NMB Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T10%3A33%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanism%20Governing%20Human%20Kappa-Opioid%20Receptor%20Expression%20under%20Desferrioxamine-Induced%20Hypoxic%20Mimic%20Condition%20in%20Neuronal%20NMB%20Cells&rft.jtitle=International%20journal%20of%20molecular%20sciences&rft.au=Babcock,%20Jennifer&rft.date=2017-01-20&rft.volume=18&rft.issue=1&rft.spage=211&rft.epage=211&rft.pages=211-211&rft.issn=1422-0067&rft.eissn=1422-0067&rft_id=info:doi/10.3390/ijms18010211&rft_dat=%3Cproquest_doaj_%3E1868301231%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c511t-9ac4f950bbb160a6f1d56f58bb359b1cc60b54d29835ebba365cb535d58500b93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1862108570&rft_id=info:pmid/28117678&rfr_iscdi=true