Loading…

Machine learning based state-of-charge prediction of electrochemical green hydrogen production: Zink-Zwischenschritt-Elektrolyseur (ZZE)

•A novel technique for hybrid energy storage and hydrogen production is introduced.•Various machine learning models are studied for effectiveness in SOC prediction.•SOC prediction is crucial for future management software of ZZE systems.•LSTM neural network showed best performance for SOC-prediction...

Full description

Saved in:
Bibliographic Details
Published in:Energy and AI 2024-05, Vol.16, p.100355, Article 100355
Main Authors: Vila, Daniel, Hornberger, Elisabeth, Toigo, Christina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-5e0fdf78034b728a2ea1d12ea7a02d66ec54761fc4713f1cd916cced5d4267633
cites cdi_FETCH-LOGICAL-c414t-5e0fdf78034b728a2ea1d12ea7a02d66ec54761fc4713f1cd916cced5d4267633
container_end_page
container_issue
container_start_page 100355
container_title Energy and AI
container_volume 16
creator Vila, Daniel
Hornberger, Elisabeth
Toigo, Christina
description •A novel technique for hybrid energy storage and hydrogen production is introduced.•Various machine learning models are studied for effectiveness in SOC prediction.•SOC prediction is crucial for future management software of ZZE systems.•LSTM neural network showed best performance for SOC-prediction with 3.21 % MAE. The intermittency of renewable energy is a key limiting factor for the successful decarbonization of both energy producing and consuming sectors. Green hydrogen has the potential to act as the central energy vector connecting hard-to-abate sectors to renewable power. However, combining energy storage and conversion for a holistic electrolyzer system remains challenging. Here, we show the innovative Zink-Zwischenschritt Elektrolyseur (ZZE), or Zinc Intermediate step Electrolyzer in English, that temporarily decouples the water splitting reaction and uses zinc to store electrical energy in chemical form. To perform optimal operation of a ZZE system, machine learning models were applied to predict the state of charge of a lab scale ZZE system. Using various models, we were able to determine the effectiveness of the prediction and contrast it to state of charge predictions of other energy storage systems. We show that a bi-directional long short-term memory neural network approach has the lowest error within the testing environment. This work serves to perform further ZZE development as well as state of charge prediction for other novel energy storage technologies.
doi_str_mv 10.1016/j.egyai.2024.100355
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_372de5a0d6694373a79d15a9346105b9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2666546824000211</els_id><doaj_id>oai_doaj_org_article_372de5a0d6694373a79d15a9346105b9</doaj_id><sourcerecordid>S2666546824000211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-5e0fdf78034b728a2ea1d12ea7a02d66ec54761fc4713f1cd916cced5d4267633</originalsourceid><addsrcrecordid>eNp9kc9uE0EMxleISlSlT8BljnDYMP8ni8QBVWmpVMSFXnIZOTPezaTbncizpcob8NhME4Q4cbEty99Ptr-meSf4QnBhP-4WOBwgLSSXuna4MuZVcy6tta3Rdvn6n_pNc1nKjnMujRCdc-fNr28QtmlCNiLQlKaBbaBgZGWGGdvct2ELNCDbE8YU5pQnlnuGI4aZctjiYwowsoEQJ7Y9RMpDLfaU49Nx-BNbp-mhXT-nUoenGijNc7sa8aHqx0PBJ2Lv1-vVh7fNWQ9jwcs_-aK5v179uPra3n2_ub36ctcGLfTcGuR97N2SK71xcgkSQURRowMuo7UYjHZW9EE7oXoRYidsCBhN1NI6q9RFc3vixgw7v6f0CHTwGZI_NjINHmhOYUSvnIxogFdsp5VT4LooDHRKW8HNpqssdWIFyqUQ9n95gvsXb_zOH73xL974kzdV9fmkwnrmz4TkS0g41SUT1bfWPdJ_9b8BHjyaqQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Machine learning based state-of-charge prediction of electrochemical green hydrogen production: Zink-Zwischenschritt-Elektrolyseur (ZZE)</title><source>ScienceDirect®</source><creator>Vila, Daniel ; Hornberger, Elisabeth ; Toigo, Christina</creator><creatorcontrib>Vila, Daniel ; Hornberger, Elisabeth ; Toigo, Christina</creatorcontrib><description>•A novel technique for hybrid energy storage and hydrogen production is introduced.•Various machine learning models are studied for effectiveness in SOC prediction.•SOC prediction is crucial for future management software of ZZE systems.•LSTM neural network showed best performance for SOC-prediction with 3.21 % MAE. The intermittency of renewable energy is a key limiting factor for the successful decarbonization of both energy producing and consuming sectors. Green hydrogen has the potential to act as the central energy vector connecting hard-to-abate sectors to renewable power. However, combining energy storage and conversion for a holistic electrolyzer system remains challenging. Here, we show the innovative Zink-Zwischenschritt Elektrolyseur (ZZE), or Zinc Intermediate step Electrolyzer in English, that temporarily decouples the water splitting reaction and uses zinc to store electrical energy in chemical form. To perform optimal operation of a ZZE system, machine learning models were applied to predict the state of charge of a lab scale ZZE system. Using various models, we were able to determine the effectiveness of the prediction and contrast it to state of charge predictions of other energy storage systems. We show that a bi-directional long short-term memory neural network approach has the lowest error within the testing environment. This work serves to perform further ZZE development as well as state of charge prediction for other novel energy storage technologies.</description><identifier>ISSN: 2666-5468</identifier><identifier>EISSN: 2666-5468</identifier><identifier>DOI: 10.1016/j.egyai.2024.100355</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Battery ; Electrolyzer ; Energy storage ; Machine learning ; Sequence-to-sequence model ; State of charge ; ZZE</subject><ispartof>Energy and AI, 2024-05, Vol.16, p.100355, Article 100355</ispartof><rights>2024 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-5e0fdf78034b728a2ea1d12ea7a02d66ec54761fc4713f1cd916cced5d4267633</citedby><cites>FETCH-LOGICAL-c414t-5e0fdf78034b728a2ea1d12ea7a02d66ec54761fc4713f1cd916cced5d4267633</cites><orcidid>0000-0003-3755-8908 ; 0000-0001-7047-711X ; 0000-0003-4548-8911</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2666546824000211$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Vila, Daniel</creatorcontrib><creatorcontrib>Hornberger, Elisabeth</creatorcontrib><creatorcontrib>Toigo, Christina</creatorcontrib><title>Machine learning based state-of-charge prediction of electrochemical green hydrogen production: Zink-Zwischenschritt-Elektrolyseur (ZZE)</title><title>Energy and AI</title><description>•A novel technique for hybrid energy storage and hydrogen production is introduced.•Various machine learning models are studied for effectiveness in SOC prediction.•SOC prediction is crucial for future management software of ZZE systems.•LSTM neural network showed best performance for SOC-prediction with 3.21 % MAE. The intermittency of renewable energy is a key limiting factor for the successful decarbonization of both energy producing and consuming sectors. Green hydrogen has the potential to act as the central energy vector connecting hard-to-abate sectors to renewable power. However, combining energy storage and conversion for a holistic electrolyzer system remains challenging. Here, we show the innovative Zink-Zwischenschritt Elektrolyseur (ZZE), or Zinc Intermediate step Electrolyzer in English, that temporarily decouples the water splitting reaction and uses zinc to store electrical energy in chemical form. To perform optimal operation of a ZZE system, machine learning models were applied to predict the state of charge of a lab scale ZZE system. Using various models, we were able to determine the effectiveness of the prediction and contrast it to state of charge predictions of other energy storage systems. We show that a bi-directional long short-term memory neural network approach has the lowest error within the testing environment. This work serves to perform further ZZE development as well as state of charge prediction for other novel energy storage technologies.</description><subject>Battery</subject><subject>Electrolyzer</subject><subject>Energy storage</subject><subject>Machine learning</subject><subject>Sequence-to-sequence model</subject><subject>State of charge</subject><subject>ZZE</subject><issn>2666-5468</issn><issn>2666-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc9uE0EMxleISlSlT8BljnDYMP8ni8QBVWmpVMSFXnIZOTPezaTbncizpcob8NhME4Q4cbEty99Ptr-meSf4QnBhP-4WOBwgLSSXuna4MuZVcy6tta3Rdvn6n_pNc1nKjnMujRCdc-fNr28QtmlCNiLQlKaBbaBgZGWGGdvct2ELNCDbE8YU5pQnlnuGI4aZctjiYwowsoEQJ7Y9RMpDLfaU49Nx-BNbp-mhXT-nUoenGijNc7sa8aHqx0PBJ2Lv1-vVh7fNWQ9jwcs_-aK5v179uPra3n2_ub36ctcGLfTcGuR97N2SK71xcgkSQURRowMuo7UYjHZW9EE7oXoRYidsCBhN1NI6q9RFc3vixgw7v6f0CHTwGZI_NjINHmhOYUSvnIxogFdsp5VT4LooDHRKW8HNpqssdWIFyqUQ9n95gvsXb_zOH73xL974kzdV9fmkwnrmz4TkS0g41SUT1bfWPdJ_9b8BHjyaqQ</recordid><startdate>202405</startdate><enddate>202405</enddate><creator>Vila, Daniel</creator><creator>Hornberger, Elisabeth</creator><creator>Toigo, Christina</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3755-8908</orcidid><orcidid>https://orcid.org/0000-0001-7047-711X</orcidid><orcidid>https://orcid.org/0000-0003-4548-8911</orcidid></search><sort><creationdate>202405</creationdate><title>Machine learning based state-of-charge prediction of electrochemical green hydrogen production: Zink-Zwischenschritt-Elektrolyseur (ZZE)</title><author>Vila, Daniel ; Hornberger, Elisabeth ; Toigo, Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-5e0fdf78034b728a2ea1d12ea7a02d66ec54761fc4713f1cd916cced5d4267633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Battery</topic><topic>Electrolyzer</topic><topic>Energy storage</topic><topic>Machine learning</topic><topic>Sequence-to-sequence model</topic><topic>State of charge</topic><topic>ZZE</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vila, Daniel</creatorcontrib><creatorcontrib>Hornberger, Elisabeth</creatorcontrib><creatorcontrib>Toigo, Christina</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Energy and AI</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vila, Daniel</au><au>Hornberger, Elisabeth</au><au>Toigo, Christina</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning based state-of-charge prediction of electrochemical green hydrogen production: Zink-Zwischenschritt-Elektrolyseur (ZZE)</atitle><jtitle>Energy and AI</jtitle><date>2024-05</date><risdate>2024</risdate><volume>16</volume><spage>100355</spage><pages>100355-</pages><artnum>100355</artnum><issn>2666-5468</issn><eissn>2666-5468</eissn><abstract>•A novel technique for hybrid energy storage and hydrogen production is introduced.•Various machine learning models are studied for effectiveness in SOC prediction.•SOC prediction is crucial for future management software of ZZE systems.•LSTM neural network showed best performance for SOC-prediction with 3.21 % MAE. The intermittency of renewable energy is a key limiting factor for the successful decarbonization of both energy producing and consuming sectors. Green hydrogen has the potential to act as the central energy vector connecting hard-to-abate sectors to renewable power. However, combining energy storage and conversion for a holistic electrolyzer system remains challenging. Here, we show the innovative Zink-Zwischenschritt Elektrolyseur (ZZE), or Zinc Intermediate step Electrolyzer in English, that temporarily decouples the water splitting reaction and uses zinc to store electrical energy in chemical form. To perform optimal operation of a ZZE system, machine learning models were applied to predict the state of charge of a lab scale ZZE system. Using various models, we were able to determine the effectiveness of the prediction and contrast it to state of charge predictions of other energy storage systems. We show that a bi-directional long short-term memory neural network approach has the lowest error within the testing environment. This work serves to perform further ZZE development as well as state of charge prediction for other novel energy storage technologies.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.egyai.2024.100355</doi><orcidid>https://orcid.org/0000-0003-3755-8908</orcidid><orcidid>https://orcid.org/0000-0001-7047-711X</orcidid><orcidid>https://orcid.org/0000-0003-4548-8911</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2666-5468
ispartof Energy and AI, 2024-05, Vol.16, p.100355, Article 100355
issn 2666-5468
2666-5468
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_372de5a0d6694373a79d15a9346105b9
source ScienceDirect®
subjects Battery
Electrolyzer
Energy storage
Machine learning
Sequence-to-sequence model
State of charge
ZZE
title Machine learning based state-of-charge prediction of electrochemical green hydrogen production: Zink-Zwischenschritt-Elektrolyseur (ZZE)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A35%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20based%20state-of-charge%20prediction%20of%20electrochemical%20green%20hydrogen%20production:%20Zink-Zwischenschritt-Elektrolyseur%20(ZZE)&rft.jtitle=Energy%20and%20AI&rft.au=Vila,%20Daniel&rft.date=2024-05&rft.volume=16&rft.spage=100355&rft.pages=100355-&rft.artnum=100355&rft.issn=2666-5468&rft.eissn=2666-5468&rft_id=info:doi/10.1016/j.egyai.2024.100355&rft_dat=%3Celsevier_doaj_%3ES2666546824000211%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-5e0fdf78034b728a2ea1d12ea7a02d66ec54761fc4713f1cd916cced5d4267633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true