Loading…

The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology

Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D....

Full description

Saved in:
Bibliographic Details
Published in:Journal of nanotechnology 2023-06, Vol.2023, p.1-8
Main Authors: Beden, Sabeeha A. J., Dumboos, Hassan A., Ismael, Mustafa K., Kadhim Mejbel, Mohanad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93
cites cdi_FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93
container_end_page 8
container_issue
container_start_page 1
container_title Journal of nanotechnology
container_volume 2023
creator Beden, Sabeeha A. J.
Dumboos, Hassan A.
Ismael, Mustafa K.
Kadhim Mejbel, Mohanad
description Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D.C. two-probes are used to identify the crystallographic structure and assess the films’ optical-electrical properties. The XRD examination showed that forming Bi2O3 films with an amorphous to multiphase crystalline structure for sputtering time of 40 min was due to soda glass substrate temperature at a range of 30–35°C. Thin films of Bi2O3 crystal structures improved with annealing heat treatment at 200, 300, 400, and 500°C. Yet the formation of crystalline phase (β-Bi2O3 with δ-Bi2O3) Bi2O3 nanostructures occurred at higher temperatures. SEM images showed transparent particles highly affected by annealing temperatures. The nanostructures were about 102–510 nm long, and the diameter was 50–100 nm. The Bi2O3 film optical band gaps and nanostructures ranged from 2.75 to 3.05 eV. The annealing temperature differences affected the crystallite sizes, optical band gaps, and surface roughness. The findings showed that these differences caused the phase transition in Bi2O3 structures. The electrical calculation revealed that the electrical conductivity improved with annealing temperatures of 150–250°C while declining with temperature (300–500)°C with typical semiconductor films.
doi_str_mv 10.1155/2023/8638512
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3738b76996f24c6487d427f9bb289b25</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3738b76996f24c6487d427f9bb289b25</doaj_id><sourcerecordid>2827112901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93</originalsourceid><addsrcrecordid>eNp9kc1uGyEUhUdRKyVKs8sDIGVZu-FnZoBlasVtpEiOUmeNGLhjY-FhCjiVX6bPWiaOsiwbuOjc78A9VXVN8DdCmuaWYspuRctEQ-hZdUFaweeyIeTTxxmz8-oqpR0ui0nKObuo_q63gJ6DBxR6dDcMoL0bNmgdQec9DBmFAS3iMWXtfdhEPW6dmaHVmJ3Rfob0YNG9B5PjVKNl6TpESBPsu6MrhtZbN6Cl8_uEniKMOoJFL2myeAZtsnsF9OR12mv0azzkDPHNHcx2CMXv-KX63Guf4Op9v6xelvfrxc_54-rHw-LucW4YY3lu67a3BjdU9BhL2mIihW2E0bq2HCQ22BBqtZWyxT3putbUtehM3Xdc1gwku6weTlwb9E6N0e11PKqgnXq7CHGjdCx_9qAYZ6LjbUH1tDZtLbitKe9l11EhO9oU1s2JNcbw-wApq104xKE8X1FBOSFUYlJUs5PKxJBShP7DlWA1BaqmQNV7oEX-9SQv87T6j_u_-h-fEp97</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827112901</pqid></control><display><type>article</type><title>The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Beden, Sabeeha A. J. ; Dumboos, Hassan A. ; Ismael, Mustafa K. ; Kadhim Mejbel, Mohanad</creator><contributor>Manickam, Sivakumar</contributor><creatorcontrib>Beden, Sabeeha A. J. ; Dumboos, Hassan A. ; Ismael, Mustafa K. ; Kadhim Mejbel, Mohanad ; Manickam, Sivakumar</creatorcontrib><description>Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D.C. two-probes are used to identify the crystallographic structure and assess the films’ optical-electrical properties. The XRD examination showed that forming Bi2O3 films with an amorphous to multiphase crystalline structure for sputtering time of 40 min was due to soda glass substrate temperature at a range of 30–35°C. Thin films of Bi2O3 crystal structures improved with annealing heat treatment at 200, 300, 400, and 500°C. Yet the formation of crystalline phase (β-Bi2O3 with δ-Bi2O3) Bi2O3 nanostructures occurred at higher temperatures. SEM images showed transparent particles highly affected by annealing temperatures. The nanostructures were about 102–510 nm long, and the diameter was 50–100 nm. The Bi2O3 film optical band gaps and nanostructures ranged from 2.75 to 3.05 eV. The annealing temperature differences affected the crystallite sizes, optical band gaps, and surface roughness. The findings showed that these differences caused the phase transition in Bi2O3 structures. The electrical calculation revealed that the electrical conductivity improved with annealing temperatures of 150–250°C while declining with temperature (300–500)°C with typical semiconductor films.</description><identifier>ISSN: 1687-9503</identifier><identifier>EISSN: 1687-9511</identifier><identifier>DOI: 10.1155/2023/8638512</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Annealing ; Bismuth oxides ; Bismuth trioxide ; Crystal structure ; Crystallites ; Crystallography ; Diffraction patterns ; Electrical properties ; Electrical resistivity ; Energy gap ; Glass substrates ; Heat treatment ; Morphology ; Nanostructure ; Optical properties ; Phase transitions ; Plasma ; Spectrometers ; Sputtering ; Surface roughness ; Temperature ; Temperature gradients ; Thin films</subject><ispartof>Journal of nanotechnology, 2023-06, Vol.2023, p.1-8</ispartof><rights>Copyright © 2023 Sabeeha A. J. Beden et al.</rights><rights>Copyright © 2023 Sabeeha A. J. Beden et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93</citedby><cites>FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93</cites><orcidid>0000-0001-5108-5460 ; 0000-0002-8034-0771 ; 0000-0003-2275-3911 ; 0000-0001-6468-7532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2827112901/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2827112901?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25730,27900,27901,36988,44565,75095</link.rule.ids></links><search><contributor>Manickam, Sivakumar</contributor><creatorcontrib>Beden, Sabeeha A. J.</creatorcontrib><creatorcontrib>Dumboos, Hassan A.</creatorcontrib><creatorcontrib>Ismael, Mustafa K.</creatorcontrib><creatorcontrib>Kadhim Mejbel, Mohanad</creatorcontrib><title>The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology</title><title>Journal of nanotechnology</title><description>Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D.C. two-probes are used to identify the crystallographic structure and assess the films’ optical-electrical properties. The XRD examination showed that forming Bi2O3 films with an amorphous to multiphase crystalline structure for sputtering time of 40 min was due to soda glass substrate temperature at a range of 30–35°C. Thin films of Bi2O3 crystal structures improved with annealing heat treatment at 200, 300, 400, and 500°C. Yet the formation of crystalline phase (β-Bi2O3 with δ-Bi2O3) Bi2O3 nanostructures occurred at higher temperatures. SEM images showed transparent particles highly affected by annealing temperatures. The nanostructures were about 102–510 nm long, and the diameter was 50–100 nm. The Bi2O3 film optical band gaps and nanostructures ranged from 2.75 to 3.05 eV. The annealing temperature differences affected the crystallite sizes, optical band gaps, and surface roughness. The findings showed that these differences caused the phase transition in Bi2O3 structures. The electrical calculation revealed that the electrical conductivity improved with annealing temperatures of 150–250°C while declining with temperature (300–500)°C with typical semiconductor films.</description><subject>Annealing</subject><subject>Bismuth oxides</subject><subject>Bismuth trioxide</subject><subject>Crystal structure</subject><subject>Crystallites</subject><subject>Crystallography</subject><subject>Diffraction patterns</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Energy gap</subject><subject>Glass substrates</subject><subject>Heat treatment</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Optical properties</subject><subject>Phase transitions</subject><subject>Plasma</subject><subject>Spectrometers</subject><subject>Sputtering</subject><subject>Surface roughness</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thin films</subject><issn>1687-9503</issn><issn>1687-9511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1uGyEUhUdRKyVKs8sDIGVZu-FnZoBlasVtpEiOUmeNGLhjY-FhCjiVX6bPWiaOsiwbuOjc78A9VXVN8DdCmuaWYspuRctEQ-hZdUFaweeyIeTTxxmz8-oqpR0ui0nKObuo_q63gJ6DBxR6dDcMoL0bNmgdQec9DBmFAS3iMWXtfdhEPW6dmaHVmJ3Rfob0YNG9B5PjVKNl6TpESBPsu6MrhtZbN6Cl8_uEniKMOoJFL2myeAZtsnsF9OR12mv0azzkDPHNHcx2CMXv-KX63Guf4Op9v6xelvfrxc_54-rHw-LucW4YY3lu67a3BjdU9BhL2mIihW2E0bq2HCQ22BBqtZWyxT3putbUtehM3Xdc1gwku6weTlwb9E6N0e11PKqgnXq7CHGjdCx_9qAYZ6LjbUH1tDZtLbitKe9l11EhO9oU1s2JNcbw-wApq104xKE8X1FBOSFUYlJUs5PKxJBShP7DlWA1BaqmQNV7oEX-9SQv87T6j_u_-h-fEp97</recordid><startdate>20230609</startdate><enddate>20230609</enddate><creator>Beden, Sabeeha A. J.</creator><creator>Dumboos, Hassan A.</creator><creator>Ismael, Mustafa K.</creator><creator>Kadhim Mejbel, Mohanad</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5108-5460</orcidid><orcidid>https://orcid.org/0000-0002-8034-0771</orcidid><orcidid>https://orcid.org/0000-0003-2275-3911</orcidid><orcidid>https://orcid.org/0000-0001-6468-7532</orcidid></search><sort><creationdate>20230609</creationdate><title>The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology</title><author>Beden, Sabeeha A. J. ; Dumboos, Hassan A. ; Ismael, Mustafa K. ; Kadhim Mejbel, Mohanad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>Bismuth oxides</topic><topic>Bismuth trioxide</topic><topic>Crystal structure</topic><topic>Crystallites</topic><topic>Crystallography</topic><topic>Diffraction patterns</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Energy gap</topic><topic>Glass substrates</topic><topic>Heat treatment</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Optical properties</topic><topic>Phase transitions</topic><topic>Plasma</topic><topic>Spectrometers</topic><topic>Sputtering</topic><topic>Surface roughness</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beden, Sabeeha A. J.</creatorcontrib><creatorcontrib>Dumboos, Hassan A.</creatorcontrib><creatorcontrib>Ismael, Mustafa K.</creatorcontrib><creatorcontrib>Kadhim Mejbel, Mohanad</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East &amp; Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DAOJ: Directory of Open Access Journals</collection><jtitle>Journal of nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beden, Sabeeha A. J.</au><au>Dumboos, Hassan A.</au><au>Ismael, Mustafa K.</au><au>Kadhim Mejbel, Mohanad</au><au>Manickam, Sivakumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology</atitle><jtitle>Journal of nanotechnology</jtitle><date>2023-06-09</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1687-9503</issn><eissn>1687-9511</eissn><abstract>Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D.C. two-probes are used to identify the crystallographic structure and assess the films’ optical-electrical properties. The XRD examination showed that forming Bi2O3 films with an amorphous to multiphase crystalline structure for sputtering time of 40 min was due to soda glass substrate temperature at a range of 30–35°C. Thin films of Bi2O3 crystal structures improved with annealing heat treatment at 200, 300, 400, and 500°C. Yet the formation of crystalline phase (β-Bi2O3 with δ-Bi2O3) Bi2O3 nanostructures occurred at higher temperatures. SEM images showed transparent particles highly affected by annealing temperatures. The nanostructures were about 102–510 nm long, and the diameter was 50–100 nm. The Bi2O3 film optical band gaps and nanostructures ranged from 2.75 to 3.05 eV. The annealing temperature differences affected the crystallite sizes, optical band gaps, and surface roughness. The findings showed that these differences caused the phase transition in Bi2O3 structures. The electrical calculation revealed that the electrical conductivity improved with annealing temperatures of 150–250°C while declining with temperature (300–500)°C with typical semiconductor films.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/8638512</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5108-5460</orcidid><orcidid>https://orcid.org/0000-0002-8034-0771</orcidid><orcidid>https://orcid.org/0000-0003-2275-3911</orcidid><orcidid>https://orcid.org/0000-0001-6468-7532</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-9503
ispartof Journal of nanotechnology, 2023-06, Vol.2023, p.1-8
issn 1687-9503
1687-9511
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3738b76996f24c6487d427f9bb289b25
source Wiley Online Library Open Access; Publicly Available Content Database
subjects Annealing
Bismuth oxides
Bismuth trioxide
Crystal structure
Crystallites
Crystallography
Diffraction patterns
Electrical properties
Electrical resistivity
Energy gap
Glass substrates
Heat treatment
Morphology
Nanostructure
Optical properties
Phase transitions
Plasma
Spectrometers
Sputtering
Surface roughness
Temperature
Temperature gradients
Thin films
title The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T09%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Annealing%20Treatment%20on%20Crystallographic,%20Optical,%20and%20Electrical%20Features%20of%20Bi2O3%20Thin%20Films%20Prepared%20Using%20Reactive%20Plasma%20Sputtering%20Technology&rft.jtitle=Journal%20of%20nanotechnology&rft.au=Beden,%20Sabeeha%20A.%20J.&rft.date=2023-06-09&rft.volume=2023&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1687-9503&rft.eissn=1687-9511&rft_id=info:doi/10.1155/2023/8638512&rft_dat=%3Cproquest_doaj_%3E2827112901%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2827112901&rft_id=info:pmid/&rfr_iscdi=true