Loading…
The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology
Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D....
Saved in:
Published in: | Journal of nanotechnology 2023-06, Vol.2023, p.1-8 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93 |
---|---|
cites | cdi_FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93 |
container_end_page | 8 |
container_issue | |
container_start_page | 1 |
container_title | Journal of nanotechnology |
container_volume | 2023 |
creator | Beden, Sabeeha A. J. Dumboos, Hassan A. Ismael, Mustafa K. Kadhim Mejbel, Mohanad |
description | Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D.C. two-probes are used to identify the crystallographic structure and assess the films’ optical-electrical properties. The XRD examination showed that forming Bi2O3 films with an amorphous to multiphase crystalline structure for sputtering time of 40 min was due to soda glass substrate temperature at a range of 30–35°C. Thin films of Bi2O3 crystal structures improved with annealing heat treatment at 200, 300, 400, and 500°C. Yet the formation of crystalline phase (β-Bi2O3 with δ-Bi2O3) Bi2O3 nanostructures occurred at higher temperatures. SEM images showed transparent particles highly affected by annealing temperatures. The nanostructures were about 102–510 nm long, and the diameter was 50–100 nm. The Bi2O3 film optical band gaps and nanostructures ranged from 2.75 to 3.05 eV. The annealing temperature differences affected the crystallite sizes, optical band gaps, and surface roughness. The findings showed that these differences caused the phase transition in Bi2O3 structures. The electrical calculation revealed that the electrical conductivity improved with annealing temperatures of 150–250°C while declining with temperature (300–500)°C with typical semiconductor films. |
doi_str_mv | 10.1155/2023/8638512 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3738b76996f24c6487d427f9bb289b25</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3738b76996f24c6487d427f9bb289b25</doaj_id><sourcerecordid>2827112901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93</originalsourceid><addsrcrecordid>eNp9kc1uGyEUhUdRKyVKs8sDIGVZu-FnZoBlasVtpEiOUmeNGLhjY-FhCjiVX6bPWiaOsiwbuOjc78A9VXVN8DdCmuaWYspuRctEQ-hZdUFaweeyIeTTxxmz8-oqpR0ui0nKObuo_q63gJ6DBxR6dDcMoL0bNmgdQec9DBmFAS3iMWXtfdhEPW6dmaHVmJ3Rfob0YNG9B5PjVKNl6TpESBPsu6MrhtZbN6Cl8_uEniKMOoJFL2myeAZtsnsF9OR12mv0azzkDPHNHcx2CMXv-KX63Guf4Op9v6xelvfrxc_54-rHw-LucW4YY3lu67a3BjdU9BhL2mIihW2E0bq2HCQ22BBqtZWyxT3putbUtehM3Xdc1gwku6weTlwb9E6N0e11PKqgnXq7CHGjdCx_9qAYZ6LjbUH1tDZtLbitKe9l11EhO9oU1s2JNcbw-wApq104xKE8X1FBOSFUYlJUs5PKxJBShP7DlWA1BaqmQNV7oEX-9SQv87T6j_u_-h-fEp97</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2827112901</pqid></control><display><type>article</type><title>The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology</title><source>Wiley Online Library Open Access</source><source>Publicly Available Content Database</source><creator>Beden, Sabeeha A. J. ; Dumboos, Hassan A. ; Ismael, Mustafa K. ; Kadhim Mejbel, Mohanad</creator><contributor>Manickam, Sivakumar</contributor><creatorcontrib>Beden, Sabeeha A. J. ; Dumboos, Hassan A. ; Ismael, Mustafa K. ; Kadhim Mejbel, Mohanad ; Manickam, Sivakumar</creatorcontrib><description>Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D.C. two-probes are used to identify the crystallographic structure and assess the films’ optical-electrical properties. The XRD examination showed that forming Bi2O3 films with an amorphous to multiphase crystalline structure for sputtering time of 40 min was due to soda glass substrate temperature at a range of 30–35°C. Thin films of Bi2O3 crystal structures improved with annealing heat treatment at 200, 300, 400, and 500°C. Yet the formation of crystalline phase (β-Bi2O3 with δ-Bi2O3) Bi2O3 nanostructures occurred at higher temperatures. SEM images showed transparent particles highly affected by annealing temperatures. The nanostructures were about 102–510 nm long, and the diameter was 50–100 nm. The Bi2O3 film optical band gaps and nanostructures ranged from 2.75 to 3.05 eV. The annealing temperature differences affected the crystallite sizes, optical band gaps, and surface roughness. The findings showed that these differences caused the phase transition in Bi2O3 structures. The electrical calculation revealed that the electrical conductivity improved with annealing temperatures of 150–250°C while declining with temperature (300–500)°C with typical semiconductor films.</description><identifier>ISSN: 1687-9503</identifier><identifier>EISSN: 1687-9511</identifier><identifier>DOI: 10.1155/2023/8638512</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Annealing ; Bismuth oxides ; Bismuth trioxide ; Crystal structure ; Crystallites ; Crystallography ; Diffraction patterns ; Electrical properties ; Electrical resistivity ; Energy gap ; Glass substrates ; Heat treatment ; Morphology ; Nanostructure ; Optical properties ; Phase transitions ; Plasma ; Spectrometers ; Sputtering ; Surface roughness ; Temperature ; Temperature gradients ; Thin films</subject><ispartof>Journal of nanotechnology, 2023-06, Vol.2023, p.1-8</ispartof><rights>Copyright © 2023 Sabeeha A. J. Beden et al.</rights><rights>Copyright © 2023 Sabeeha A. J. Beden et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93</citedby><cites>FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93</cites><orcidid>0000-0001-5108-5460 ; 0000-0002-8034-0771 ; 0000-0003-2275-3911 ; 0000-0001-6468-7532</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2827112901/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2827112901?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25730,27900,27901,36988,44565,75095</link.rule.ids></links><search><contributor>Manickam, Sivakumar</contributor><creatorcontrib>Beden, Sabeeha A. J.</creatorcontrib><creatorcontrib>Dumboos, Hassan A.</creatorcontrib><creatorcontrib>Ismael, Mustafa K.</creatorcontrib><creatorcontrib>Kadhim Mejbel, Mohanad</creatorcontrib><title>The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology</title><title>Journal of nanotechnology</title><description>Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D.C. two-probes are used to identify the crystallographic structure and assess the films’ optical-electrical properties. The XRD examination showed that forming Bi2O3 films with an amorphous to multiphase crystalline structure for sputtering time of 40 min was due to soda glass substrate temperature at a range of 30–35°C. Thin films of Bi2O3 crystal structures improved with annealing heat treatment at 200, 300, 400, and 500°C. Yet the formation of crystalline phase (β-Bi2O3 with δ-Bi2O3) Bi2O3 nanostructures occurred at higher temperatures. SEM images showed transparent particles highly affected by annealing temperatures. The nanostructures were about 102–510 nm long, and the diameter was 50–100 nm. The Bi2O3 film optical band gaps and nanostructures ranged from 2.75 to 3.05 eV. The annealing temperature differences affected the crystallite sizes, optical band gaps, and surface roughness. The findings showed that these differences caused the phase transition in Bi2O3 structures. The electrical calculation revealed that the electrical conductivity improved with annealing temperatures of 150–250°C while declining with temperature (300–500)°C with typical semiconductor films.</description><subject>Annealing</subject><subject>Bismuth oxides</subject><subject>Bismuth trioxide</subject><subject>Crystal structure</subject><subject>Crystallites</subject><subject>Crystallography</subject><subject>Diffraction patterns</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Energy gap</subject><subject>Glass substrates</subject><subject>Heat treatment</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Optical properties</subject><subject>Phase transitions</subject><subject>Plasma</subject><subject>Spectrometers</subject><subject>Sputtering</subject><subject>Surface roughness</subject><subject>Temperature</subject><subject>Temperature gradients</subject><subject>Thin films</subject><issn>1687-9503</issn><issn>1687-9511</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1uGyEUhUdRKyVKs8sDIGVZu-FnZoBlasVtpEiOUmeNGLhjY-FhCjiVX6bPWiaOsiwbuOjc78A9VXVN8DdCmuaWYspuRctEQ-hZdUFaweeyIeTTxxmz8-oqpR0ui0nKObuo_q63gJ6DBxR6dDcMoL0bNmgdQec9DBmFAS3iMWXtfdhEPW6dmaHVmJ3Rfob0YNG9B5PjVKNl6TpESBPsu6MrhtZbN6Cl8_uEniKMOoJFL2myeAZtsnsF9OR12mv0azzkDPHNHcx2CMXv-KX63Guf4Op9v6xelvfrxc_54-rHw-LucW4YY3lu67a3BjdU9BhL2mIihW2E0bq2HCQ22BBqtZWyxT3putbUtehM3Xdc1gwku6weTlwb9E6N0e11PKqgnXq7CHGjdCx_9qAYZ6LjbUH1tDZtLbitKe9l11EhO9oU1s2JNcbw-wApq104xKE8X1FBOSFUYlJUs5PKxJBShP7DlWA1BaqmQNV7oEX-9SQv87T6j_u_-h-fEp97</recordid><startdate>20230609</startdate><enddate>20230609</enddate><creator>Beden, Sabeeha A. J.</creator><creator>Dumboos, Hassan A.</creator><creator>Ismael, Mustafa K.</creator><creator>Kadhim Mejbel, Mohanad</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5108-5460</orcidid><orcidid>https://orcid.org/0000-0002-8034-0771</orcidid><orcidid>https://orcid.org/0000-0003-2275-3911</orcidid><orcidid>https://orcid.org/0000-0001-6468-7532</orcidid></search><sort><creationdate>20230609</creationdate><title>The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology</title><author>Beden, Sabeeha A. J. ; Dumboos, Hassan A. ; Ismael, Mustafa K. ; Kadhim Mejbel, Mohanad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Annealing</topic><topic>Bismuth oxides</topic><topic>Bismuth trioxide</topic><topic>Crystal structure</topic><topic>Crystallites</topic><topic>Crystallography</topic><topic>Diffraction patterns</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Energy gap</topic><topic>Glass substrates</topic><topic>Heat treatment</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Optical properties</topic><topic>Phase transitions</topic><topic>Plasma</topic><topic>Spectrometers</topic><topic>Sputtering</topic><topic>Surface roughness</topic><topic>Temperature</topic><topic>Temperature gradients</topic><topic>Thin films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beden, Sabeeha A. J.</creatorcontrib><creatorcontrib>Dumboos, Hassan A.</creatorcontrib><creatorcontrib>Ismael, Mustafa K.</creatorcontrib><creatorcontrib>Kadhim Mejbel, Mohanad</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>DAOJ: Directory of Open Access Journals</collection><jtitle>Journal of nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beden, Sabeeha A. J.</au><au>Dumboos, Hassan A.</au><au>Ismael, Mustafa K.</au><au>Kadhim Mejbel, Mohanad</au><au>Manickam, Sivakumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology</atitle><jtitle>Journal of nanotechnology</jtitle><date>2023-06-09</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1687-9503</issn><eissn>1687-9511</eissn><abstract>Bismuth oxide (Bi2O3) has attracted considerable research interest in test thin films made utilizing the reactive plasma sputtering (RPS) technology-assisted annealing treatment, allowing the development of diverse BixOx thin films. SEM, phase X-ray diffraction patterns, UV-Vis spectrometers, and D.C. two-probes are used to identify the crystallographic structure and assess the films’ optical-electrical properties. The XRD examination showed that forming Bi2O3 films with an amorphous to multiphase crystalline structure for sputtering time of 40 min was due to soda glass substrate temperature at a range of 30–35°C. Thin films of Bi2O3 crystal structures improved with annealing heat treatment at 200, 300, 400, and 500°C. Yet the formation of crystalline phase (β-Bi2O3 with δ-Bi2O3) Bi2O3 nanostructures occurred at higher temperatures. SEM images showed transparent particles highly affected by annealing temperatures. The nanostructures were about 102–510 nm long, and the diameter was 50–100 nm. The Bi2O3 film optical band gaps and nanostructures ranged from 2.75 to 3.05 eV. The annealing temperature differences affected the crystallite sizes, optical band gaps, and surface roughness. The findings showed that these differences caused the phase transition in Bi2O3 structures. The electrical calculation revealed that the electrical conductivity improved with annealing temperatures of 150–250°C while declining with temperature (300–500)°C with typical semiconductor films.</abstract><cop>New York</cop><pub>Hindawi</pub><doi>10.1155/2023/8638512</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5108-5460</orcidid><orcidid>https://orcid.org/0000-0002-8034-0771</orcidid><orcidid>https://orcid.org/0000-0003-2275-3911</orcidid><orcidid>https://orcid.org/0000-0001-6468-7532</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-9503 |
ispartof | Journal of nanotechnology, 2023-06, Vol.2023, p.1-8 |
issn | 1687-9503 1687-9511 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3738b76996f24c6487d427f9bb289b25 |
source | Wiley Online Library Open Access; Publicly Available Content Database |
subjects | Annealing Bismuth oxides Bismuth trioxide Crystal structure Crystallites Crystallography Diffraction patterns Electrical properties Electrical resistivity Energy gap Glass substrates Heat treatment Morphology Nanostructure Optical properties Phase transitions Plasma Spectrometers Sputtering Surface roughness Temperature Temperature gradients Thin films |
title | The Role of Annealing Treatment on Crystallographic, Optical, and Electrical Features of Bi2O3 Thin Films Prepared Using Reactive Plasma Sputtering Technology |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-25T09%3A05%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Annealing%20Treatment%20on%20Crystallographic,%20Optical,%20and%20Electrical%20Features%20of%20Bi2O3%20Thin%20Films%20Prepared%20Using%20Reactive%20Plasma%20Sputtering%20Technology&rft.jtitle=Journal%20of%20nanotechnology&rft.au=Beden,%20Sabeeha%20A.%20J.&rft.date=2023-06-09&rft.volume=2023&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1687-9503&rft.eissn=1687-9511&rft_id=info:doi/10.1155/2023/8638512&rft_dat=%3Cproquest_doaj_%3E2827112901%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-d46fdc0528f009260198d58caa4d7e90c0c12dad9960f1bb6c448bc4fb7943e93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2827112901&rft_id=info:pmid/&rfr_iscdi=true |