Loading…
Greenhouse Gas Emission Assessment from Electricity Production in the Czech Republic
The paper deals with the computational life cycle assessment (LCA) model of electricity generation in the Czech Republic. The goal of the paper was to determine the environmental assessment of electricity generation. Taking into account the trend of electricity generation from 2000 to 2050, the pape...
Saved in:
Published in: | Environments (Basel, Switzerland) Switzerland), 2018-01, Vol.5 (1), p.17 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper deals with the computational life cycle assessment (LCA) model of electricity generation in the Czech Republic. The goal of the paper was to determine the environmental assessment of electricity generation. Taking into account the trend of electricity generation from 2000 to 2050, the paper was focused on electricity generation evaluation in this country in view of its current state and future perspectives. The computational LCA model was done using the Intergovernmental Panel on Climate Change (IPCC) method, which allowed the assessment of greenhouse gas emissions. For the assessment, 1 Mega-watt hour of the obtained electricity (MWhe) was used as a functional unit. The cradle-to-gate approach was employed. The system boundary covered all the technologies included in the electricity mix of the country. Resulting from the analysis, the solids, lignite in particular, was assessed as an energy source with the most negative impact on the emissions of greenhouse gas. This article results from international cooperation of a Czech-Polish team in the field of computational LCA models. It presents partial results of the team cooperation which serves as a base for following comparison of Czech and Polish systems of electricity generation. |
---|---|
ISSN: | 2076-3298 2076-3298 |
DOI: | 10.3390/environments5010017 |