Loading…
Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics
Computational fluid dynamics has been widely used to study hemodynamics, but accurately determining boundary conditions for turbulent blood flow remains challenging. This study aims to investigate the effect of patient-specific turbulence boundary conditions on the accuracy of turbulent flow simulat...
Saved in:
Published in: | Scientific reports 2023-09, Vol.13 (1), p.14638-14638, Article 14638 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183 |
---|---|
cites | cdi_FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183 |
container_end_page | 14638 |
container_issue | 1 |
container_start_page | 14638 |
container_title | Scientific reports |
container_volume | 13 |
creator | Jung, Eui Cheol Lee, Gyu-Han Shim, Eun Bo Ha, Hojin |
description | Computational fluid dynamics has been widely used to study hemodynamics, but accurately determining boundary conditions for turbulent blood flow remains challenging. This study aims to investigate the effect of patient-specific turbulence boundary conditions on the accuracy of turbulent flow simulation. Using a stenosis model with 50% severity in diameter, the post-stenosis turbulence flow region was simulated with different planes to obtain inlet boundary conditions and simulate downstream flows. The errors of simulated flow fields obtained with turbulence kinetic energy (TKE) boundary data and arbitrary turbulence intensity were compared. Additionally, the study tested various TKE data resolutions and noise levels to simulate experimental environments. The mean absolute error of velocity and TKE was investigated with various turbulence intensities and TKE mapping. While voxel size and signal-to-noise ratio of the TKE data affected the results, simulation with SNR > 5 and voxel size |
doi_str_mv | 10.1038/s41598-023-41324-w |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3742fc1c4cee42f09b5c68947d145190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3742fc1c4cee42f09b5c68947d145190</doaj_id><sourcerecordid>2861035303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183</originalsourceid><addsrcrecordid>eNp9ks1O3DAUhSPUChDlBVhZ6qabFP_FP6sKobYgIXXTri3HdoKniT21447mAXjvmgmi0EW98dW93z3ysU7TXCD4EUEiLjNFnRQtxKSliGDa7o6aUwxp12KC8ZsX9UlznvMG1tNhSZE8bk4IZxxCzE-bh6ucXc4-jGC5d8DPW20WEAewlNSXyYUF_PTBLd4AF1wa96CPJVid9sDEYP3iY8gghhf8MMUdyH4uk16n5SBv4rwty6GlpwoVb4HdBz17k981bwc9ZXf-dJ81P758_n590959-3p7fXXXmg6JpUW6R70VhiPBCcFMGso464lkg5XDoyWjjcHWWaSd5kyjwUEJOXfCMIYEOWtuV10b9UZtk5-rERW1V4dGTKPSqXqdnCKc4sEgQ41ztYKy7wwTknKLaIckrFqfVq1t6WdnTbWe9PRK9PUk-Hs1xt8KQSogErgqfHhSSPFXcXlRs8_GTZMOLpassGCIUUJlV9H3_6CbWFL9yJWCpCOQVAqvlEkx5-SG59cgqB5To9bUqJoadUiN2tUlsi7lCofRpb_S_9n6A8SMx4o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861035303</pqid></control><display><type>article</type><title>Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jung, Eui Cheol ; Lee, Gyu-Han ; Shim, Eun Bo ; Ha, Hojin</creator><creatorcontrib>Jung, Eui Cheol ; Lee, Gyu-Han ; Shim, Eun Bo ; Ha, Hojin</creatorcontrib><description>Computational fluid dynamics has been widely used to study hemodynamics, but accurately determining boundary conditions for turbulent blood flow remains challenging. This study aims to investigate the effect of patient-specific turbulence boundary conditions on the accuracy of turbulent flow simulation. Using a stenosis model with 50% severity in diameter, the post-stenosis turbulence flow region was simulated with different planes to obtain inlet boundary conditions and simulate downstream flows. The errors of simulated flow fields obtained with turbulence kinetic energy (TKE) boundary data and arbitrary turbulence intensity were compared. Additionally, the study tested various TKE data resolutions and noise levels to simulate experimental environments. The mean absolute error of velocity and TKE was investigated with various turbulence intensities and TKE mapping. While voxel size and signal-to-noise ratio of the TKE data affected the results, simulation with SNR > 5 and voxel size < 10% resulted in better accuracy than simulations with turbulence intensities. The simulation with appropriate TKE boundary data resulted in a more accurate velocity and turbulence field than those with arbitrary turbulence intensity boundary conditions. The study demonstrated the potential improvement of turbulent blood flow simulation with patient-specific turbulence boundary conditions, which can be obtained from recent measurement techniques.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-41324-w</identifier><identifier>PMID: 37670027</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/166/985 ; Blood flow ; Boundary conditions ; Computer applications ; Fluid dynamics ; Fluid flow ; Hemodynamics ; Humanities and Social Sciences ; Hydrodynamics ; Kinetic energy ; Measurement techniques ; multidisciplinary ; Noise levels ; Science ; Science (multidisciplinary) ; Simulation ; Stenosis ; Turbulence ; Velocity</subject><ispartof>Scientific reports, 2023-09, Vol.13 (1), p.14638-14638, Article 14638</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183</citedby><cites>FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2861035303/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2861035303?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids></links><search><creatorcontrib>Jung, Eui Cheol</creatorcontrib><creatorcontrib>Lee, Gyu-Han</creatorcontrib><creatorcontrib>Shim, Eun Bo</creatorcontrib><creatorcontrib>Ha, Hojin</creatorcontrib><title>Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Computational fluid dynamics has been widely used to study hemodynamics, but accurately determining boundary conditions for turbulent blood flow remains challenging. This study aims to investigate the effect of patient-specific turbulence boundary conditions on the accuracy of turbulent flow simulation. Using a stenosis model with 50% severity in diameter, the post-stenosis turbulence flow region was simulated with different planes to obtain inlet boundary conditions and simulate downstream flows. The errors of simulated flow fields obtained with turbulence kinetic energy (TKE) boundary data and arbitrary turbulence intensity were compared. Additionally, the study tested various TKE data resolutions and noise levels to simulate experimental environments. The mean absolute error of velocity and TKE was investigated with various turbulence intensities and TKE mapping. While voxel size and signal-to-noise ratio of the TKE data affected the results, simulation with SNR > 5 and voxel size < 10% resulted in better accuracy than simulations with turbulence intensities. The simulation with appropriate TKE boundary data resulted in a more accurate velocity and turbulence field than those with arbitrary turbulence intensity boundary conditions. The study demonstrated the potential improvement of turbulent blood flow simulation with patient-specific turbulence boundary conditions, which can be obtained from recent measurement techniques.</description><subject>639/166</subject><subject>639/166/985</subject><subject>Blood flow</subject><subject>Boundary conditions</subject><subject>Computer applications</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hemodynamics</subject><subject>Humanities and Social Sciences</subject><subject>Hydrodynamics</subject><subject>Kinetic energy</subject><subject>Measurement techniques</subject><subject>multidisciplinary</subject><subject>Noise levels</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Stenosis</subject><subject>Turbulence</subject><subject>Velocity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1O3DAUhSPUChDlBVhZ6qabFP_FP6sKobYgIXXTri3HdoKniT21447mAXjvmgmi0EW98dW93z3ysU7TXCD4EUEiLjNFnRQtxKSliGDa7o6aUwxp12KC8ZsX9UlznvMG1tNhSZE8bk4IZxxCzE-bh6ucXc4-jGC5d8DPW20WEAewlNSXyYUF_PTBLd4AF1wa96CPJVid9sDEYP3iY8gghhf8MMUdyH4uk16n5SBv4rwty6GlpwoVb4HdBz17k981bwc9ZXf-dJ81P758_n590959-3p7fXXXmg6JpUW6R70VhiPBCcFMGso464lkg5XDoyWjjcHWWaSd5kyjwUEJOXfCMIYEOWtuV10b9UZtk5-rERW1V4dGTKPSqXqdnCKc4sEgQ41ztYKy7wwTknKLaIckrFqfVq1t6WdnTbWe9PRK9PUk-Hs1xt8KQSogErgqfHhSSPFXcXlRs8_GTZMOLpassGCIUUJlV9H3_6CbWFL9yJWCpCOQVAqvlEkx5-SG59cgqB5To9bUqJoadUiN2tUlsi7lCofRpb_S_9n6A8SMx4o</recordid><startdate>20230905</startdate><enddate>20230905</enddate><creator>Jung, Eui Cheol</creator><creator>Lee, Gyu-Han</creator><creator>Shim, Eun Bo</creator><creator>Ha, Hojin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230905</creationdate><title>Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics</title><author>Jung, Eui Cheol ; Lee, Gyu-Han ; Shim, Eun Bo ; Ha, Hojin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166</topic><topic>639/166/985</topic><topic>Blood flow</topic><topic>Boundary conditions</topic><topic>Computer applications</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hemodynamics</topic><topic>Humanities and Social Sciences</topic><topic>Hydrodynamics</topic><topic>Kinetic energy</topic><topic>Measurement techniques</topic><topic>multidisciplinary</topic><topic>Noise levels</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Stenosis</topic><topic>Turbulence</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Eui Cheol</creatorcontrib><creatorcontrib>Lee, Gyu-Han</creatorcontrib><creatorcontrib>Shim, Eun Bo</creatorcontrib><creatorcontrib>Ha, Hojin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Eui Cheol</au><au>Lee, Gyu-Han</au><au>Shim, Eun Bo</au><au>Ha, Hojin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2023-09-05</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>14638</spage><epage>14638</epage><pages>14638-14638</pages><artnum>14638</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Computational fluid dynamics has been widely used to study hemodynamics, but accurately determining boundary conditions for turbulent blood flow remains challenging. This study aims to investigate the effect of patient-specific turbulence boundary conditions on the accuracy of turbulent flow simulation. Using a stenosis model with 50% severity in diameter, the post-stenosis turbulence flow region was simulated with different planes to obtain inlet boundary conditions and simulate downstream flows. The errors of simulated flow fields obtained with turbulence kinetic energy (TKE) boundary data and arbitrary turbulence intensity were compared. Additionally, the study tested various TKE data resolutions and noise levels to simulate experimental environments. The mean absolute error of velocity and TKE was investigated with various turbulence intensities and TKE mapping. While voxel size and signal-to-noise ratio of the TKE data affected the results, simulation with SNR > 5 and voxel size < 10% resulted in better accuracy than simulations with turbulence intensities. The simulation with appropriate TKE boundary data resulted in a more accurate velocity and turbulence field than those with arbitrary turbulence intensity boundary conditions. The study demonstrated the potential improvement of turbulent blood flow simulation with patient-specific turbulence boundary conditions, which can be obtained from recent measurement techniques.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37670027</pmid><doi>10.1038/s41598-023-41324-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2023-09, Vol.13 (1), p.14638-14638, Article 14638 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3742fc1c4cee42f09b5c68947d145190 |
source | Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/166 639/166/985 Blood flow Boundary conditions Computer applications Fluid dynamics Fluid flow Hemodynamics Humanities and Social Sciences Hydrodynamics Kinetic energy Measurement techniques multidisciplinary Noise levels Science Science (multidisciplinary) Simulation Stenosis Turbulence Velocity |
title | Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T23%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20impact%20of%20turbulent%20kinetic%20energy%20boundary%20conditions%20on%20turbulent%20flow%20simulations%20using%20computational%20fluid%20dynamics&rft.jtitle=Scientific%20reports&rft.au=Jung,%20Eui%20Cheol&rft.date=2023-09-05&rft.volume=13&rft.issue=1&rft.spage=14638&rft.epage=14638&rft.pages=14638-14638&rft.artnum=14638&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-41324-w&rft_dat=%3Cproquest_doaj_%3E2861035303%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861035303&rft_id=info:pmid/37670027&rfr_iscdi=true |