Loading…

Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics

Computational fluid dynamics has been widely used to study hemodynamics, but accurately determining boundary conditions for turbulent blood flow remains challenging. This study aims to investigate the effect of patient-specific turbulence boundary conditions on the accuracy of turbulent flow simulat...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2023-09, Vol.13 (1), p.14638-14638, Article 14638
Main Authors: Jung, Eui Cheol, Lee, Gyu-Han, Shim, Eun Bo, Ha, Hojin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183
cites cdi_FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183
container_end_page 14638
container_issue 1
container_start_page 14638
container_title Scientific reports
container_volume 13
creator Jung, Eui Cheol
Lee, Gyu-Han
Shim, Eun Bo
Ha, Hojin
description Computational fluid dynamics has been widely used to study hemodynamics, but accurately determining boundary conditions for turbulent blood flow remains challenging. This study aims to investigate the effect of patient-specific turbulence boundary conditions on the accuracy of turbulent flow simulation. Using a stenosis model with 50% severity in diameter, the post-stenosis turbulence flow region was simulated with different planes to obtain inlet boundary conditions and simulate downstream flows. The errors of simulated flow fields obtained with turbulence kinetic energy (TKE) boundary data and arbitrary turbulence intensity were compared. Additionally, the study tested various TKE data resolutions and noise levels to simulate experimental environments. The mean absolute error of velocity and TKE was investigated with various turbulence intensities and TKE mapping. While voxel size and signal-to-noise ratio of the TKE data affected the results, simulation with SNR > 5 and voxel size 
doi_str_mv 10.1038/s41598-023-41324-w
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3742fc1c4cee42f09b5c68947d145190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3742fc1c4cee42f09b5c68947d145190</doaj_id><sourcerecordid>2861035303</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183</originalsourceid><addsrcrecordid>eNp9ks1O3DAUhSPUChDlBVhZ6qabFP_FP6sKobYgIXXTri3HdoKniT21447mAXjvmgmi0EW98dW93z3ysU7TXCD4EUEiLjNFnRQtxKSliGDa7o6aUwxp12KC8ZsX9UlznvMG1tNhSZE8bk4IZxxCzE-bh6ucXc4-jGC5d8DPW20WEAewlNSXyYUF_PTBLd4AF1wa96CPJVid9sDEYP3iY8gghhf8MMUdyH4uk16n5SBv4rwty6GlpwoVb4HdBz17k981bwc9ZXf-dJ81P758_n590959-3p7fXXXmg6JpUW6R70VhiPBCcFMGso464lkg5XDoyWjjcHWWaSd5kyjwUEJOXfCMIYEOWtuV10b9UZtk5-rERW1V4dGTKPSqXqdnCKc4sEgQ41ztYKy7wwTknKLaIckrFqfVq1t6WdnTbWe9PRK9PUk-Hs1xt8KQSogErgqfHhSSPFXcXlRs8_GTZMOLpassGCIUUJlV9H3_6CbWFL9yJWCpCOQVAqvlEkx5-SG59cgqB5To9bUqJoadUiN2tUlsi7lCofRpb_S_9n6A8SMx4o</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2861035303</pqid></control><display><type>article</type><title>Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Jung, Eui Cheol ; Lee, Gyu-Han ; Shim, Eun Bo ; Ha, Hojin</creator><creatorcontrib>Jung, Eui Cheol ; Lee, Gyu-Han ; Shim, Eun Bo ; Ha, Hojin</creatorcontrib><description>Computational fluid dynamics has been widely used to study hemodynamics, but accurately determining boundary conditions for turbulent blood flow remains challenging. This study aims to investigate the effect of patient-specific turbulence boundary conditions on the accuracy of turbulent flow simulation. Using a stenosis model with 50% severity in diameter, the post-stenosis turbulence flow region was simulated with different planes to obtain inlet boundary conditions and simulate downstream flows. The errors of simulated flow fields obtained with turbulence kinetic energy (TKE) boundary data and arbitrary turbulence intensity were compared. Additionally, the study tested various TKE data resolutions and noise levels to simulate experimental environments. The mean absolute error of velocity and TKE was investigated with various turbulence intensities and TKE mapping. While voxel size and signal-to-noise ratio of the TKE data affected the results, simulation with SNR &gt; 5 and voxel size &lt; 10% resulted in better accuracy than simulations with turbulence intensities. The simulation with appropriate TKE boundary data resulted in a more accurate velocity and turbulence field than those with arbitrary turbulence intensity boundary conditions. The study demonstrated the potential improvement of turbulent blood flow simulation with patient-specific turbulence boundary conditions, which can be obtained from recent measurement techniques.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-023-41324-w</identifier><identifier>PMID: 37670027</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/166 ; 639/166/985 ; Blood flow ; Boundary conditions ; Computer applications ; Fluid dynamics ; Fluid flow ; Hemodynamics ; Humanities and Social Sciences ; Hydrodynamics ; Kinetic energy ; Measurement techniques ; multidisciplinary ; Noise levels ; Science ; Science (multidisciplinary) ; Simulation ; Stenosis ; Turbulence ; Velocity</subject><ispartof>Scientific reports, 2023-09, Vol.13 (1), p.14638-14638, Article 14638</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Springer Nature Limited 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183</citedby><cites>FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2861035303/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2861035303?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,75096</link.rule.ids></links><search><creatorcontrib>Jung, Eui Cheol</creatorcontrib><creatorcontrib>Lee, Gyu-Han</creatorcontrib><creatorcontrib>Shim, Eun Bo</creatorcontrib><creatorcontrib>Ha, Hojin</creatorcontrib><title>Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>Computational fluid dynamics has been widely used to study hemodynamics, but accurately determining boundary conditions for turbulent blood flow remains challenging. This study aims to investigate the effect of patient-specific turbulence boundary conditions on the accuracy of turbulent flow simulation. Using a stenosis model with 50% severity in diameter, the post-stenosis turbulence flow region was simulated with different planes to obtain inlet boundary conditions and simulate downstream flows. The errors of simulated flow fields obtained with turbulence kinetic energy (TKE) boundary data and arbitrary turbulence intensity were compared. Additionally, the study tested various TKE data resolutions and noise levels to simulate experimental environments. The mean absolute error of velocity and TKE was investigated with various turbulence intensities and TKE mapping. While voxel size and signal-to-noise ratio of the TKE data affected the results, simulation with SNR &gt; 5 and voxel size &lt; 10% resulted in better accuracy than simulations with turbulence intensities. The simulation with appropriate TKE boundary data resulted in a more accurate velocity and turbulence field than those with arbitrary turbulence intensity boundary conditions. The study demonstrated the potential improvement of turbulent blood flow simulation with patient-specific turbulence boundary conditions, which can be obtained from recent measurement techniques.</description><subject>639/166</subject><subject>639/166/985</subject><subject>Blood flow</subject><subject>Boundary conditions</subject><subject>Computer applications</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hemodynamics</subject><subject>Humanities and Social Sciences</subject><subject>Hydrodynamics</subject><subject>Kinetic energy</subject><subject>Measurement techniques</subject><subject>multidisciplinary</subject><subject>Noise levels</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Simulation</subject><subject>Stenosis</subject><subject>Turbulence</subject><subject>Velocity</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1O3DAUhSPUChDlBVhZ6qabFP_FP6sKobYgIXXTri3HdoKniT21447mAXjvmgmi0EW98dW93z3ysU7TXCD4EUEiLjNFnRQtxKSliGDa7o6aUwxp12KC8ZsX9UlznvMG1tNhSZE8bk4IZxxCzE-bh6ucXc4-jGC5d8DPW20WEAewlNSXyYUF_PTBLd4AF1wa96CPJVid9sDEYP3iY8gghhf8MMUdyH4uk16n5SBv4rwty6GlpwoVb4HdBz17k981bwc9ZXf-dJ81P758_n590959-3p7fXXXmg6JpUW6R70VhiPBCcFMGso464lkg5XDoyWjjcHWWaSd5kyjwUEJOXfCMIYEOWtuV10b9UZtk5-rERW1V4dGTKPSqXqdnCKc4sEgQ41ztYKy7wwTknKLaIckrFqfVq1t6WdnTbWe9PRK9PUk-Hs1xt8KQSogErgqfHhSSPFXcXlRs8_GTZMOLpassGCIUUJlV9H3_6CbWFL9yJWCpCOQVAqvlEkx5-SG59cgqB5To9bUqJoadUiN2tUlsi7lCofRpb_S_9n6A8SMx4o</recordid><startdate>20230905</startdate><enddate>20230905</enddate><creator>Jung, Eui Cheol</creator><creator>Lee, Gyu-Han</creator><creator>Shim, Eun Bo</creator><creator>Ha, Hojin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20230905</creationdate><title>Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics</title><author>Jung, Eui Cheol ; Lee, Gyu-Han ; Shim, Eun Bo ; Ha, Hojin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/166</topic><topic>639/166/985</topic><topic>Blood flow</topic><topic>Boundary conditions</topic><topic>Computer applications</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hemodynamics</topic><topic>Humanities and Social Sciences</topic><topic>Hydrodynamics</topic><topic>Kinetic energy</topic><topic>Measurement techniques</topic><topic>multidisciplinary</topic><topic>Noise levels</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Simulation</topic><topic>Stenosis</topic><topic>Turbulence</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jung, Eui Cheol</creatorcontrib><creatorcontrib>Lee, Gyu-Han</creatorcontrib><creatorcontrib>Shim, Eun Bo</creatorcontrib><creatorcontrib>Ha, Hojin</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health Medical collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jung, Eui Cheol</au><au>Lee, Gyu-Han</au><au>Shim, Eun Bo</au><au>Ha, Hojin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2023-09-05</date><risdate>2023</risdate><volume>13</volume><issue>1</issue><spage>14638</spage><epage>14638</epage><pages>14638-14638</pages><artnum>14638</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Computational fluid dynamics has been widely used to study hemodynamics, but accurately determining boundary conditions for turbulent blood flow remains challenging. This study aims to investigate the effect of patient-specific turbulence boundary conditions on the accuracy of turbulent flow simulation. Using a stenosis model with 50% severity in diameter, the post-stenosis turbulence flow region was simulated with different planes to obtain inlet boundary conditions and simulate downstream flows. The errors of simulated flow fields obtained with turbulence kinetic energy (TKE) boundary data and arbitrary turbulence intensity were compared. Additionally, the study tested various TKE data resolutions and noise levels to simulate experimental environments. The mean absolute error of velocity and TKE was investigated with various turbulence intensities and TKE mapping. While voxel size and signal-to-noise ratio of the TKE data affected the results, simulation with SNR &gt; 5 and voxel size &lt; 10% resulted in better accuracy than simulations with turbulence intensities. The simulation with appropriate TKE boundary data resulted in a more accurate velocity and turbulence field than those with arbitrary turbulence intensity boundary conditions. The study demonstrated the potential improvement of turbulent blood flow simulation with patient-specific turbulence boundary conditions, which can be obtained from recent measurement techniques.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>37670027</pmid><doi>10.1038/s41598-023-41324-w</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2023-09, Vol.13 (1), p.14638-14638, Article 14638
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3742fc1c4cee42f09b5c68947d145190
source Publicly Available Content Database; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/166
639/166/985
Blood flow
Boundary conditions
Computer applications
Fluid dynamics
Fluid flow
Hemodynamics
Humanities and Social Sciences
Hydrodynamics
Kinetic energy
Measurement techniques
multidisciplinary
Noise levels
Science
Science (multidisciplinary)
Simulation
Stenosis
Turbulence
Velocity
title Assessing the impact of turbulent kinetic energy boundary conditions on turbulent flow simulations using computational fluid dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T23%3A54%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessing%20the%20impact%20of%20turbulent%20kinetic%20energy%20boundary%20conditions%20on%20turbulent%20flow%20simulations%20using%20computational%20fluid%20dynamics&rft.jtitle=Scientific%20reports&rft.au=Jung,%20Eui%20Cheol&rft.date=2023-09-05&rft.volume=13&rft.issue=1&rft.spage=14638&rft.epage=14638&rft.pages=14638-14638&rft.artnum=14638&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-023-41324-w&rft_dat=%3Cproquest_doaj_%3E2861035303%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c518t-1ab1bd8c718733269c4676b396fd9f6700cacc2ded1aea76a1fe09077e8c66183%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2861035303&rft_id=info:pmid/37670027&rfr_iscdi=true