Loading…

Displacement Measurement Based on the Missing-Order Talbot Effect

Displacement measurement is a crucial application, with laser-based methods offering high precision and being well established in commercial settings. However, these methods often come with the drawbacks of significant size and exorbitant costs. We introduce a novel displacement measurement method t...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2025-01, Vol.25 (1), p.292
Main Authors: Song, Liuxing, Zhao, Kailun, Wang, Xiaoyong, He, Jinping, Tian, Guoliang, Yang, Shihua, Li, Yaning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c364t-cba2e857d6b8d90a1720a816a82f5c6838d8d116c331417dd46366828d624f213
container_end_page
container_issue 1
container_start_page 292
container_title Sensors (Basel, Switzerland)
container_volume 25
creator Song, Liuxing
Zhao, Kailun
Wang, Xiaoyong
He, Jinping
Tian, Guoliang
Yang, Shihua
Li, Yaning
description Displacement measurement is a crucial application, with laser-based methods offering high precision and being well established in commercial settings. However, these methods often come with the drawbacks of significant size and exorbitant costs. We introduce a novel displacement measurement method that utilizes the missing-order Talbot effect. This approach circumvents the need to measure contrast in the Talbot diffraction field, opting instead to leverage the displacement within the missing-order Talbot diffraction pattern. Our method only requires parallel light, an amplitude grating, and a detector to achieve displacement measurement. The measurement dynamic range can be adjusted by altering the grating period and the wavelength of the incident light. Through careful simulation and experimental validation, our method exhibits a correlation coefficient surpassing 0.999 across a 30 mm dynamic range and achieves a precision superior to 3 μm.
doi_str_mv 10.3390/s25010292
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3743ccc2d7e44459b0d1c728aa1bdca1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A823514654</galeid><doaj_id>oai_doaj_org_article_3743ccc2d7e44459b0d1c728aa1bdca1</doaj_id><sourcerecordid>A823514654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-cba2e857d6b8d90a1720a816a82f5c6838d8d116c331417dd46366828d624f213</originalsourceid><addsrcrecordid>eNpdksFO3DAQhqOqVaHQQ1-gitRLOQRsj-04p2oLlCKBuNCzNbGdxask3toJUt--3oauAPng0fibf_6xpig-UXIK0JCzxAShhDXsTXFIOeOVYoy8fRYfFB9S2hDCAEC9Lw6gqZuaKDgsVhc-bXs0bnDjVN46THNc4u-YnC3DWE4Prrz1KflxXd1F62J5j30bpvKy65yZjot3HfbJfXy6j4pfPy7vz39WN3dX1-erm8qA5FNlWmROidrKVtmGIK0ZQUUlKtYJIxUoqyyl0gBQTmtruQQpFVNWMt4xCkfF9aJrA270NvoB4x8d0Ot_iRDXGuPkTe801ByMMczWjnMumpZYamqmEGlrDe60vi1a27kdnDV53oj9C9GXL6N_0OvwqGm2DVyKrPD1SSGG37NLkx58Mq7vcXRhThqo4JwIIUlGv7xCN2GOY_6rHQVSKQFNpk4Xao15Aj92ITc2-Vg3eBNG1_mcXykGgmYDPBecLAUmhpSi6_b2KdG7tdD7tcjs5-fz7sn_ewB_AdSrr48</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153688539</pqid></control><display><type>article</type><title>Displacement Measurement Based on the Missing-Order Talbot Effect</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Song, Liuxing ; Zhao, Kailun ; Wang, Xiaoyong ; He, Jinping ; Tian, Guoliang ; Yang, Shihua ; Li, Yaning</creator><creatorcontrib>Song, Liuxing ; Zhao, Kailun ; Wang, Xiaoyong ; He, Jinping ; Tian, Guoliang ; Yang, Shihua ; Li, Yaning</creatorcontrib><description>Displacement measurement is a crucial application, with laser-based methods offering high precision and being well established in commercial settings. However, these methods often come with the drawbacks of significant size and exorbitant costs. We introduce a novel displacement measurement method that utilizes the missing-order Talbot effect. This approach circumvents the need to measure contrast in the Talbot diffraction field, opting instead to leverage the displacement within the missing-order Talbot diffraction pattern. Our method only requires parallel light, an amplitude grating, and a detector to achieve displacement measurement. The measurement dynamic range can be adjusted by altering the grating period and the wavelength of the incident light. Through careful simulation and experimental validation, our method exhibits a correlation coefficient surpassing 0.999 across a 30 mm dynamic range and achieves a precision superior to 3 μm.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s25010292</identifier><identifier>PMID: 39797083</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Detectors ; displacement measurement ; FFT ; grating ; Interferometry ; Lasers ; Light ; Measurement ; missing-order Talbot effect ; Propagation ; Talbot effect</subject><ispartof>Sensors (Basel, Switzerland), 2025-01, Vol.25 (1), p.292</ispartof><rights>COPYRIGHT 2025 MDPI AG</rights><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 by the authors. 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-cba2e857d6b8d90a1720a816a82f5c6838d8d116c331417dd46366828d624f213</cites><orcidid>0009-0008-8558-3060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3153688539/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3153688539?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39797083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Liuxing</creatorcontrib><creatorcontrib>Zhao, Kailun</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>He, Jinping</creatorcontrib><creatorcontrib>Tian, Guoliang</creatorcontrib><creatorcontrib>Yang, Shihua</creatorcontrib><creatorcontrib>Li, Yaning</creatorcontrib><title>Displacement Measurement Based on the Missing-Order Talbot Effect</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Displacement measurement is a crucial application, with laser-based methods offering high precision and being well established in commercial settings. However, these methods often come with the drawbacks of significant size and exorbitant costs. We introduce a novel displacement measurement method that utilizes the missing-order Talbot effect. This approach circumvents the need to measure contrast in the Talbot diffraction field, opting instead to leverage the displacement within the missing-order Talbot diffraction pattern. Our method only requires parallel light, an amplitude grating, and a detector to achieve displacement measurement. The measurement dynamic range can be adjusted by altering the grating period and the wavelength of the incident light. Through careful simulation and experimental validation, our method exhibits a correlation coefficient surpassing 0.999 across a 30 mm dynamic range and achieves a precision superior to 3 μm.</description><subject>Detectors</subject><subject>displacement measurement</subject><subject>FFT</subject><subject>grating</subject><subject>Interferometry</subject><subject>Lasers</subject><subject>Light</subject><subject>Measurement</subject><subject>missing-order Talbot effect</subject><subject>Propagation</subject><subject>Talbot effect</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdksFO3DAQhqOqVaHQQ1-gitRLOQRsj-04p2oLlCKBuNCzNbGdxask3toJUt--3oauAPng0fibf_6xpig-UXIK0JCzxAShhDXsTXFIOeOVYoy8fRYfFB9S2hDCAEC9Lw6gqZuaKDgsVhc-bXs0bnDjVN46THNc4u-YnC3DWE4Prrz1KflxXd1F62J5j30bpvKy65yZjot3HfbJfXy6j4pfPy7vz39WN3dX1-erm8qA5FNlWmROidrKVtmGIK0ZQUUlKtYJIxUoqyyl0gBQTmtruQQpFVNWMt4xCkfF9aJrA270NvoB4x8d0Ot_iRDXGuPkTe801ByMMczWjnMumpZYamqmEGlrDe60vi1a27kdnDV53oj9C9GXL6N_0OvwqGm2DVyKrPD1SSGG37NLkx58Mq7vcXRhThqo4JwIIUlGv7xCN2GOY_6rHQVSKQFNpk4Xao15Aj92ITc2-Vg3eBNG1_mcXykGgmYDPBecLAUmhpSi6_b2KdG7tdD7tcjs5-fz7sn_ewB_AdSrr48</recordid><startdate>20250106</startdate><enddate>20250106</enddate><creator>Song, Liuxing</creator><creator>Zhao, Kailun</creator><creator>Wang, Xiaoyong</creator><creator>He, Jinping</creator><creator>Tian, Guoliang</creator><creator>Yang, Shihua</creator><creator>Li, Yaning</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-8558-3060</orcidid></search><sort><creationdate>20250106</creationdate><title>Displacement Measurement Based on the Missing-Order Talbot Effect</title><author>Song, Liuxing ; Zhao, Kailun ; Wang, Xiaoyong ; He, Jinping ; Tian, Guoliang ; Yang, Shihua ; Li, Yaning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-cba2e857d6b8d90a1720a816a82f5c6838d8d116c331417dd46366828d624f213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Detectors</topic><topic>displacement measurement</topic><topic>FFT</topic><topic>grating</topic><topic>Interferometry</topic><topic>Lasers</topic><topic>Light</topic><topic>Measurement</topic><topic>missing-order Talbot effect</topic><topic>Propagation</topic><topic>Talbot effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Liuxing</creatorcontrib><creatorcontrib>Zhao, Kailun</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>He, Jinping</creatorcontrib><creatorcontrib>Tian, Guoliang</creatorcontrib><creatorcontrib>Yang, Shihua</creatorcontrib><creatorcontrib>Li, Yaning</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Liuxing</au><au>Zhao, Kailun</au><au>Wang, Xiaoyong</au><au>He, Jinping</au><au>Tian, Guoliang</au><au>Yang, Shihua</au><au>Li, Yaning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Displacement Measurement Based on the Missing-Order Talbot Effect</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2025-01-06</date><risdate>2025</risdate><volume>25</volume><issue>1</issue><spage>292</spage><pages>292-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Displacement measurement is a crucial application, with laser-based methods offering high precision and being well established in commercial settings. However, these methods often come with the drawbacks of significant size and exorbitant costs. We introduce a novel displacement measurement method that utilizes the missing-order Talbot effect. This approach circumvents the need to measure contrast in the Talbot diffraction field, opting instead to leverage the displacement within the missing-order Talbot diffraction pattern. Our method only requires parallel light, an amplitude grating, and a detector to achieve displacement measurement. The measurement dynamic range can be adjusted by altering the grating period and the wavelength of the incident light. Through careful simulation and experimental validation, our method exhibits a correlation coefficient surpassing 0.999 across a 30 mm dynamic range and achieves a precision superior to 3 μm.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39797083</pmid><doi>10.3390/s25010292</doi><orcidid>https://orcid.org/0009-0008-8558-3060</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2025-01, Vol.25 (1), p.292
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3743ccc2d7e44459b0d1c728aa1bdca1
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central
subjects Detectors
displacement measurement
FFT
grating
Interferometry
Lasers
Light
Measurement
missing-order Talbot effect
Propagation
Talbot effect
title Displacement Measurement Based on the Missing-Order Talbot Effect
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Displacement%20Measurement%20Based%20on%20the%20Missing-Order%20Talbot%20Effect&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Song,%20Liuxing&rft.date=2025-01-06&rft.volume=25&rft.issue=1&rft.spage=292&rft.pages=292-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s25010292&rft_dat=%3Cgale_doaj_%3EA823514654%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-cba2e857d6b8d90a1720a816a82f5c6838d8d116c331417dd46366828d624f213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153688539&rft_id=info:pmid/39797083&rft_galeid=A823514654&rfr_iscdi=true