Loading…
Displacement Measurement Based on the Missing-Order Talbot Effect
Displacement measurement is a crucial application, with laser-based methods offering high precision and being well established in commercial settings. However, these methods often come with the drawbacks of significant size and exorbitant costs. We introduce a novel displacement measurement method t...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2025-01, Vol.25 (1), p.292 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-cba2e857d6b8d90a1720a816a82f5c6838d8d116c331417dd46366828d624f213 |
container_end_page | |
container_issue | 1 |
container_start_page | 292 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 25 |
creator | Song, Liuxing Zhao, Kailun Wang, Xiaoyong He, Jinping Tian, Guoliang Yang, Shihua Li, Yaning |
description | Displacement measurement is a crucial application, with laser-based methods offering high precision and being well established in commercial settings. However, these methods often come with the drawbacks of significant size and exorbitant costs. We introduce a novel displacement measurement method that utilizes the missing-order Talbot effect. This approach circumvents the need to measure contrast in the Talbot diffraction field, opting instead to leverage the displacement within the missing-order Talbot diffraction pattern. Our method only requires parallel light, an amplitude grating, and a detector to achieve displacement measurement. The measurement dynamic range can be adjusted by altering the grating period and the wavelength of the incident light. Through careful simulation and experimental validation, our method exhibits a correlation coefficient
surpassing 0.999 across a 30 mm dynamic range and achieves a precision superior to 3 μm. |
doi_str_mv | 10.3390/s25010292 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3743ccc2d7e44459b0d1c728aa1bdca1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A823514654</galeid><doaj_id>oai_doaj_org_article_3743ccc2d7e44459b0d1c728aa1bdca1</doaj_id><sourcerecordid>A823514654</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-cba2e857d6b8d90a1720a816a82f5c6838d8d116c331417dd46366828d624f213</originalsourceid><addsrcrecordid>eNpdksFO3DAQhqOqVaHQQ1-gitRLOQRsj-04p2oLlCKBuNCzNbGdxask3toJUt--3oauAPng0fibf_6xpig-UXIK0JCzxAShhDXsTXFIOeOVYoy8fRYfFB9S2hDCAEC9Lw6gqZuaKDgsVhc-bXs0bnDjVN46THNc4u-YnC3DWE4Prrz1KflxXd1F62J5j30bpvKy65yZjot3HfbJfXy6j4pfPy7vz39WN3dX1-erm8qA5FNlWmROidrKVtmGIK0ZQUUlKtYJIxUoqyyl0gBQTmtruQQpFVNWMt4xCkfF9aJrA270NvoB4x8d0Ot_iRDXGuPkTe801ByMMczWjnMumpZYamqmEGlrDe60vi1a27kdnDV53oj9C9GXL6N_0OvwqGm2DVyKrPD1SSGG37NLkx58Mq7vcXRhThqo4JwIIUlGv7xCN2GOY_6rHQVSKQFNpk4Xao15Aj92ITc2-Vg3eBNG1_mcXykGgmYDPBecLAUmhpSi6_b2KdG7tdD7tcjs5-fz7sn_ewB_AdSrr48</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3153688539</pqid></control><display><type>article</type><title>Displacement Measurement Based on the Missing-Order Talbot Effect</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>PubMed Central</source><creator>Song, Liuxing ; Zhao, Kailun ; Wang, Xiaoyong ; He, Jinping ; Tian, Guoliang ; Yang, Shihua ; Li, Yaning</creator><creatorcontrib>Song, Liuxing ; Zhao, Kailun ; Wang, Xiaoyong ; He, Jinping ; Tian, Guoliang ; Yang, Shihua ; Li, Yaning</creatorcontrib><description>Displacement measurement is a crucial application, with laser-based methods offering high precision and being well established in commercial settings. However, these methods often come with the drawbacks of significant size and exorbitant costs. We introduce a novel displacement measurement method that utilizes the missing-order Talbot effect. This approach circumvents the need to measure contrast in the Talbot diffraction field, opting instead to leverage the displacement within the missing-order Talbot diffraction pattern. Our method only requires parallel light, an amplitude grating, and a detector to achieve displacement measurement. The measurement dynamic range can be adjusted by altering the grating period and the wavelength of the incident light. Through careful simulation and experimental validation, our method exhibits a correlation coefficient
surpassing 0.999 across a 30 mm dynamic range and achieves a precision superior to 3 μm.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s25010292</identifier><identifier>PMID: 39797083</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Detectors ; displacement measurement ; FFT ; grating ; Interferometry ; Lasers ; Light ; Measurement ; missing-order Talbot effect ; Propagation ; Talbot effect</subject><ispartof>Sensors (Basel, Switzerland), 2025-01, Vol.25 (1), p.292</ispartof><rights>COPYRIGHT 2025 MDPI AG</rights><rights>2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2025 by the authors. 2025</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c364t-cba2e857d6b8d90a1720a816a82f5c6838d8d116c331417dd46366828d624f213</cites><orcidid>0009-0008-8558-3060</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3153688539/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3153688539?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39797083$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Song, Liuxing</creatorcontrib><creatorcontrib>Zhao, Kailun</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>He, Jinping</creatorcontrib><creatorcontrib>Tian, Guoliang</creatorcontrib><creatorcontrib>Yang, Shihua</creatorcontrib><creatorcontrib>Li, Yaning</creatorcontrib><title>Displacement Measurement Based on the Missing-Order Talbot Effect</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Displacement measurement is a crucial application, with laser-based methods offering high precision and being well established in commercial settings. However, these methods often come with the drawbacks of significant size and exorbitant costs. We introduce a novel displacement measurement method that utilizes the missing-order Talbot effect. This approach circumvents the need to measure contrast in the Talbot diffraction field, opting instead to leverage the displacement within the missing-order Talbot diffraction pattern. Our method only requires parallel light, an amplitude grating, and a detector to achieve displacement measurement. The measurement dynamic range can be adjusted by altering the grating period and the wavelength of the incident light. Through careful simulation and experimental validation, our method exhibits a correlation coefficient
surpassing 0.999 across a 30 mm dynamic range and achieves a precision superior to 3 μm.</description><subject>Detectors</subject><subject>displacement measurement</subject><subject>FFT</subject><subject>grating</subject><subject>Interferometry</subject><subject>Lasers</subject><subject>Light</subject><subject>Measurement</subject><subject>missing-order Talbot effect</subject><subject>Propagation</subject><subject>Talbot effect</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2025</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdksFO3DAQhqOqVaHQQ1-gitRLOQRsj-04p2oLlCKBuNCzNbGdxask3toJUt--3oauAPng0fibf_6xpig-UXIK0JCzxAShhDXsTXFIOeOVYoy8fRYfFB9S2hDCAEC9Lw6gqZuaKDgsVhc-bXs0bnDjVN46THNc4u-YnC3DWE4Prrz1KflxXd1F62J5j30bpvKy65yZjot3HfbJfXy6j4pfPy7vz39WN3dX1-erm8qA5FNlWmROidrKVtmGIK0ZQUUlKtYJIxUoqyyl0gBQTmtruQQpFVNWMt4xCkfF9aJrA270NvoB4x8d0Ot_iRDXGuPkTe801ByMMczWjnMumpZYamqmEGlrDe60vi1a27kdnDV53oj9C9GXL6N_0OvwqGm2DVyKrPD1SSGG37NLkx58Mq7vcXRhThqo4JwIIUlGv7xCN2GOY_6rHQVSKQFNpk4Xao15Aj92ITc2-Vg3eBNG1_mcXykGgmYDPBecLAUmhpSi6_b2KdG7tdD7tcjs5-fz7sn_ewB_AdSrr48</recordid><startdate>20250106</startdate><enddate>20250106</enddate><creator>Song, Liuxing</creator><creator>Zhao, Kailun</creator><creator>Wang, Xiaoyong</creator><creator>He, Jinping</creator><creator>Tian, Guoliang</creator><creator>Yang, Shihua</creator><creator>Li, Yaning</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0008-8558-3060</orcidid></search><sort><creationdate>20250106</creationdate><title>Displacement Measurement Based on the Missing-Order Talbot Effect</title><author>Song, Liuxing ; Zhao, Kailun ; Wang, Xiaoyong ; He, Jinping ; Tian, Guoliang ; Yang, Shihua ; Li, Yaning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-cba2e857d6b8d90a1720a816a82f5c6838d8d116c331417dd46366828d624f213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2025</creationdate><topic>Detectors</topic><topic>displacement measurement</topic><topic>FFT</topic><topic>grating</topic><topic>Interferometry</topic><topic>Lasers</topic><topic>Light</topic><topic>Measurement</topic><topic>missing-order Talbot effect</topic><topic>Propagation</topic><topic>Talbot effect</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Liuxing</creatorcontrib><creatorcontrib>Zhao, Kailun</creatorcontrib><creatorcontrib>Wang, Xiaoyong</creatorcontrib><creatorcontrib>He, Jinping</creatorcontrib><creatorcontrib>Tian, Guoliang</creatorcontrib><creatorcontrib>Yang, Shihua</creatorcontrib><creatorcontrib>Li, Yaning</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Liuxing</au><au>Zhao, Kailun</au><au>Wang, Xiaoyong</au><au>He, Jinping</au><au>Tian, Guoliang</au><au>Yang, Shihua</au><au>Li, Yaning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Displacement Measurement Based on the Missing-Order Talbot Effect</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2025-01-06</date><risdate>2025</risdate><volume>25</volume><issue>1</issue><spage>292</spage><pages>292-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Displacement measurement is a crucial application, with laser-based methods offering high precision and being well established in commercial settings. However, these methods often come with the drawbacks of significant size and exorbitant costs. We introduce a novel displacement measurement method that utilizes the missing-order Talbot effect. This approach circumvents the need to measure contrast in the Talbot diffraction field, opting instead to leverage the displacement within the missing-order Talbot diffraction pattern. Our method only requires parallel light, an amplitude grating, and a detector to achieve displacement measurement. The measurement dynamic range can be adjusted by altering the grating period and the wavelength of the incident light. Through careful simulation and experimental validation, our method exhibits a correlation coefficient
surpassing 0.999 across a 30 mm dynamic range and achieves a precision superior to 3 μm.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>39797083</pmid><doi>10.3390/s25010292</doi><orcidid>https://orcid.org/0009-0008-8558-3060</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2025-01, Vol.25 (1), p.292 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3743ccc2d7e44459b0d1c728aa1bdca1 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); PubMed Central |
subjects | Detectors displacement measurement FFT grating Interferometry Lasers Light Measurement missing-order Talbot effect Propagation Talbot effect |
title | Displacement Measurement Based on the Missing-Order Talbot Effect |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T14%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Displacement%20Measurement%20Based%20on%20the%20Missing-Order%20Talbot%20Effect&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Song,%20Liuxing&rft.date=2025-01-06&rft.volume=25&rft.issue=1&rft.spage=292&rft.pages=292-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s25010292&rft_dat=%3Cgale_doaj_%3EA823514654%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-cba2e857d6b8d90a1720a816a82f5c6838d8d116c331417dd46366828d624f213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3153688539&rft_id=info:pmid/39797083&rft_galeid=A823514654&rfr_iscdi=true |