Loading…

HOXA5 Participates in Brown Adipose Tissue and Epaxial Skeletal Muscle Patterning and in Brown Adipocyte Differentiation

Brown adipose tissue (BAT) plays critical thermogenic, metabolic and endocrine roles in mammals, and aberrant BAT function is associated with metabolic disorders including obesity and diabetes. The major BAT depots are clustered at the neck and forelimb levels, and arise largely within the dermomyot...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in cell and developmental biology 2021-02, Vol.9, p.632303-632303
Main Authors: Holzman, Miriam A, Ryckman, Abigail, Finkelstein, Tova M, Landry-Truchon, Kim, Schindler, Kyra A, Bergmann, Jenna M, Jeannotte, Lucie, Mansfield, Jennifer H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Brown adipose tissue (BAT) plays critical thermogenic, metabolic and endocrine roles in mammals, and aberrant BAT function is associated with metabolic disorders including obesity and diabetes. The major BAT depots are clustered at the neck and forelimb levels, and arise largely within the dermomyotome of somites, from a common progenitor with skeletal muscle. However, many aspects of BAT embryonic development are not well understood. patterns other tissues at the cervical and brachial levels, including skeletal, neural and respiratory structures. Here, we show that also positively regulates BAT development, while negatively regulating formation of epaxial skeletal muscle. HOXA5 protein is expressed in embryonic preadipocytes and adipocytes as early as embryonic day 12.5. null mutant embryos and rare, surviving adults show subtly reduced iBAT and sBAT formation, as well as aberrant marker expression, lower adipocyte density and altered lipid droplet morphology. Conversely, the epaxial muscles that arise from a common dermomyotome progenitor are expanded in mutants. Conditional deletion of with can reproduce both BAT and epaxial muscle phenotypes, indicating that HOXA5 is necessary within positive cells for proper BAT and epaxial muscle development. However, recombinase-based lineage tracing shows that does not act cell-autonomously to repress skeletal muscle fate. Interestingly, -dependent regulation of adipose-associated transcripts is conserved in lung and diaphragm, suggesting a shared molecular role for in multiple tissues. Together, these findings establish a role for in embryonic BAT development.
ISSN:2296-634X
2296-634X
DOI:10.3389/fcell.2021.632303