Loading…

On the protective capacity of a safety vest for the thoracic injury caused by falling down

Aged people all over the world are prone to fall down accidentally and be injured with fracture, such as the rib fracture. To protect the elderly, the safety vest has been developed to protect them from being injured when falling down. To effectively protect the elderly, more analysis on the protect...

Full description

Saved in:
Bibliographic Details
Published in:Biomedical engineering online 2019-04, Vol.18 (1), p.40-40, Article 40
Main Authors: Li, Jing, Chen, Duanduan, Tang, Xiaoying, Li, Hanjun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aged people all over the world are prone to fall down accidentally and be injured with fracture, such as the rib fracture. To protect the elderly, the safety vest has been developed to protect them from being injured when falling down. To effectively protect the elderly, more analysis on the protective capacity of a safety vest under different situation are needed. Herein, a finite element model based on the computed tomography CT scanning data of a Chinese old female was built, and then used to simulate the process of falling down at different velocities. Analysis and comparison were done on the maximum shear stress, kinetic energy curves and internal energy curves with and without safety vest. The maximum shear stress indicated that the Abbreviated Injury Scale (AIS) 2+ injury risks of rib were 8%, 100% and 100% at the velocities of 1.5 m/s, 2.0 m/s and 2.5 m/s, respectively. The corresponding risks were lowered to 0%, 0% and 60% by the vest, respectively. Furthermore, the vest could absorb the internal energy resulted by the deformation of the thoracic osseous tissue by about 20%, thus decreasing the shear stress and the injury risk. It is concluded that the safety vest decreases the injury risk when the elderly fall down, thus protects them from being injured.
ISSN:1475-925X
1475-925X
DOI:10.1186/s12938-019-0652-3