Loading…

LDA-based topic modeling for COVID-19-related sports research trends

IntroductionThe COVID-19 pandemic could generate a turning point for introducing a new system for sports participation and business. The purpose of this study is to explore trends and topic structures of COVID-19-related sports research by analyzing the relevant literature. MethodsSports studies rel...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in psychology 2022-11, Vol.13, p.1033872-1033872
Main Authors: Lee, Jea Woog, Kim, YoungBin, Han, Doug Hyun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3
cites cdi_FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3
container_end_page 1033872
container_issue
container_start_page 1033872
container_title Frontiers in psychology
container_volume 13
creator Lee, Jea Woog
Kim, YoungBin
Han, Doug Hyun
description IntroductionThe COVID-19 pandemic could generate a turning point for introducing a new system for sports participation and business. The purpose of this study is to explore trends and topic structures of COVID-19-related sports research by analyzing the relevant literature. MethodsSports studies related to COVID-19 were collected in searching international academic databases. After the pre-processing step using the refinement and morpheme analysis function of the Net Miner program, topic modeling and social network analysis were used to analyze Journal Citation Reports found using the search term 'COVID-19 sports'. ResultsAs a result, this study used subject modeling to reveal important potential topics in COVID-19-related sports research articles. 'Sports participation', 'elite players', and 'sports industry' were macroscopically classified, and detailed research topics could be identified from each division. ConclusionThis study revealed important latent topics from COVID-19-related sports research articles using topic modeling. The results of the research elucidate the structure of academic knowledge on this topic and provide guidance for future research.
doi_str_mv 10.3389/fpsyg.2022.1033872
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_375f6a6635c848aeb7705b92ddd2d235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_375f6a6635c848aeb7705b92ddd2d235</doaj_id><sourcerecordid>2744667896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3</originalsourceid><addsrcrecordid>eNpVkUtrwzAQhE1poaHNH-jJx16c6mXJuhRC0kcgkEvbq9hI68TBsVzJKeTf13lQmr3sMjt8c5gkeaBkxHmhn8o27lcjRhgbUdIril0lAyqlyChRxfW_-zYZxrgh_QjCCGGDZDqfjrMlRHRp59vKplvvsK6aVVr6kE4WX7NpRnUWsIau98TWhy6mASNCsOu0C9i4eJ_clFBHHJ73XfL5-vIxec_mi7fZZDzPrBB5lzmWg3SWSccF0YKALEvkhQSHKAUFdJZqRZlVGilyRVFrXQhbUKpUzoHfJbMT13nYmDZUWwh746EyR8GHlYHQVbZGw1VeSpCS57YQBeBSKZIvNXPOMcd43rOeT6x2t9z2ydh0AeoL6OWnqdZm5X-MVkTk5AB4PAOC_95h7My2ihbrGhr0u2iYEkJKVWjZW9nJaoOPMWD5F0OJOVRojhWaQ4XmXCH_BVYrj2Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2744667896</pqid></control><display><type>article</type><title>LDA-based topic modeling for COVID-19-related sports research trends</title><source>PubMed Central</source><creator>Lee, Jea Woog ; Kim, YoungBin ; Han, Doug Hyun</creator><creatorcontrib>Lee, Jea Woog ; Kim, YoungBin ; Han, Doug Hyun</creatorcontrib><description>IntroductionThe COVID-19 pandemic could generate a turning point for introducing a new system for sports participation and business. The purpose of this study is to explore trends and topic structures of COVID-19-related sports research by analyzing the relevant literature. MethodsSports studies related to COVID-19 were collected in searching international academic databases. After the pre-processing step using the refinement and morpheme analysis function of the Net Miner program, topic modeling and social network analysis were used to analyze Journal Citation Reports found using the search term 'COVID-19 sports'. ResultsAs a result, this study used subject modeling to reveal important potential topics in COVID-19-related sports research articles. 'Sports participation', 'elite players', and 'sports industry' were macroscopically classified, and detailed research topics could be identified from each division. ConclusionThis study revealed important latent topics from COVID-19-related sports research articles using topic modeling. The results of the research elucidate the structure of academic knowledge on this topic and provide guidance for future research.</description><identifier>ISSN: 1664-1078</identifier><identifier>EISSN: 1664-1078</identifier><identifier>DOI: 10.3389/fpsyg.2022.1033872</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>COVID-19 ; data science ; LDA algorithm ; Psychology ; research trend ; sport ; topic modeling</subject><ispartof>Frontiers in psychology, 2022-11, Vol.13, p.1033872-1033872</ispartof><rights>Copyright © 2022 Lee, Kim and Han. 2022 Lee, Kim and Han</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3</citedby><cites>FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704505/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704505/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Lee, Jea Woog</creatorcontrib><creatorcontrib>Kim, YoungBin</creatorcontrib><creatorcontrib>Han, Doug Hyun</creatorcontrib><title>LDA-based topic modeling for COVID-19-related sports research trends</title><title>Frontiers in psychology</title><description>IntroductionThe COVID-19 pandemic could generate a turning point for introducing a new system for sports participation and business. The purpose of this study is to explore trends and topic structures of COVID-19-related sports research by analyzing the relevant literature. MethodsSports studies related to COVID-19 were collected in searching international academic databases. After the pre-processing step using the refinement and morpheme analysis function of the Net Miner program, topic modeling and social network analysis were used to analyze Journal Citation Reports found using the search term 'COVID-19 sports'. ResultsAs a result, this study used subject modeling to reveal important potential topics in COVID-19-related sports research articles. 'Sports participation', 'elite players', and 'sports industry' were macroscopically classified, and detailed research topics could be identified from each division. ConclusionThis study revealed important latent topics from COVID-19-related sports research articles using topic modeling. The results of the research elucidate the structure of academic knowledge on this topic and provide guidance for future research.</description><subject>COVID-19</subject><subject>data science</subject><subject>LDA algorithm</subject><subject>Psychology</subject><subject>research trend</subject><subject>sport</subject><subject>topic modeling</subject><issn>1664-1078</issn><issn>1664-1078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtrwzAQhE1poaHNH-jJx16c6mXJuhRC0kcgkEvbq9hI68TBsVzJKeTf13lQmr3sMjt8c5gkeaBkxHmhn8o27lcjRhgbUdIril0lAyqlyChRxfW_-zYZxrgh_QjCCGGDZDqfjrMlRHRp59vKplvvsK6aVVr6kE4WX7NpRnUWsIau98TWhy6mASNCsOu0C9i4eJ_clFBHHJ73XfL5-vIxec_mi7fZZDzPrBB5lzmWg3SWSccF0YKALEvkhQSHKAUFdJZqRZlVGilyRVFrXQhbUKpUzoHfJbMT13nYmDZUWwh746EyR8GHlYHQVbZGw1VeSpCS57YQBeBSKZIvNXPOMcd43rOeT6x2t9z2ydh0AeoL6OWnqdZm5X-MVkTk5AB4PAOC_95h7My2ihbrGhr0u2iYEkJKVWjZW9nJaoOPMWD5F0OJOVRojhWaQ4XmXCH_BVYrj2Y</recordid><startdate>20221114</startdate><enddate>20221114</enddate><creator>Lee, Jea Woog</creator><creator>Kim, YoungBin</creator><creator>Han, Doug Hyun</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221114</creationdate><title>LDA-based topic modeling for COVID-19-related sports research trends</title><author>Lee, Jea Woog ; Kim, YoungBin ; Han, Doug Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>COVID-19</topic><topic>data science</topic><topic>LDA algorithm</topic><topic>Psychology</topic><topic>research trend</topic><topic>sport</topic><topic>topic modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jea Woog</creatorcontrib><creatorcontrib>Kim, YoungBin</creatorcontrib><creatorcontrib>Han, Doug Hyun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jea Woog</au><au>Kim, YoungBin</au><au>Han, Doug Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LDA-based topic modeling for COVID-19-related sports research trends</atitle><jtitle>Frontiers in psychology</jtitle><date>2022-11-14</date><risdate>2022</risdate><volume>13</volume><spage>1033872</spage><epage>1033872</epage><pages>1033872-1033872</pages><issn>1664-1078</issn><eissn>1664-1078</eissn><abstract>IntroductionThe COVID-19 pandemic could generate a turning point for introducing a new system for sports participation and business. The purpose of this study is to explore trends and topic structures of COVID-19-related sports research by analyzing the relevant literature. MethodsSports studies related to COVID-19 were collected in searching international academic databases. After the pre-processing step using the refinement and morpheme analysis function of the Net Miner program, topic modeling and social network analysis were used to analyze Journal Citation Reports found using the search term 'COVID-19 sports'. ResultsAs a result, this study used subject modeling to reveal important potential topics in COVID-19-related sports research articles. 'Sports participation', 'elite players', and 'sports industry' were macroscopically classified, and detailed research topics could be identified from each division. ConclusionThis study revealed important latent topics from COVID-19-related sports research articles using topic modeling. The results of the research elucidate the structure of academic knowledge on this topic and provide guidance for future research.</abstract><pub>Frontiers Media S.A</pub><doi>10.3389/fpsyg.2022.1033872</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1664-1078
ispartof Frontiers in psychology, 2022-11, Vol.13, p.1033872-1033872
issn 1664-1078
1664-1078
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_375f6a6635c848aeb7705b92ddd2d235
source PubMed Central
subjects COVID-19
data science
LDA algorithm
Psychology
research trend
sport
topic modeling
title LDA-based topic modeling for COVID-19-related sports research trends
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LDA-based%20topic%20modeling%20for%20COVID-19-related%20sports%20research%20trends&rft.jtitle=Frontiers%20in%20psychology&rft.au=Lee,%20Jea%20Woog&rft.date=2022-11-14&rft.volume=13&rft.spage=1033872&rft.epage=1033872&rft.pages=1033872-1033872&rft.issn=1664-1078&rft.eissn=1664-1078&rft_id=info:doi/10.3389/fpsyg.2022.1033872&rft_dat=%3Cproquest_doaj_%3E2744667896%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2744667896&rft_id=info:pmid/&rfr_iscdi=true