Loading…
LDA-based topic modeling for COVID-19-related sports research trends
IntroductionThe COVID-19 pandemic could generate a turning point for introducing a new system for sports participation and business. The purpose of this study is to explore trends and topic structures of COVID-19-related sports research by analyzing the relevant literature. MethodsSports studies rel...
Saved in:
Published in: | Frontiers in psychology 2022-11, Vol.13, p.1033872-1033872 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3 |
container_end_page | 1033872 |
container_issue | |
container_start_page | 1033872 |
container_title | Frontiers in psychology |
container_volume | 13 |
creator | Lee, Jea Woog Kim, YoungBin Han, Doug Hyun |
description | IntroductionThe COVID-19 pandemic could generate a turning point for introducing a new system for sports participation and business. The purpose of this study is to explore trends and topic structures of COVID-19-related sports research by analyzing the relevant literature. MethodsSports studies related to COVID-19 were collected in searching international academic databases. After the pre-processing step using the refinement and morpheme analysis function of the Net Miner program, topic modeling and social network analysis were used to analyze Journal Citation Reports found using the search term 'COVID-19 sports'. ResultsAs a result, this study used subject modeling to reveal important potential topics in COVID-19-related sports research articles. 'Sports participation', 'elite players', and 'sports industry' were macroscopically classified, and detailed research topics could be identified from each division. ConclusionThis study revealed important latent topics from COVID-19-related sports research articles using topic modeling. The results of the research elucidate the structure of academic knowledge on this topic and provide guidance for future research. |
doi_str_mv | 10.3389/fpsyg.2022.1033872 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_375f6a6635c848aeb7705b92ddd2d235</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_375f6a6635c848aeb7705b92ddd2d235</doaj_id><sourcerecordid>2744667896</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3</originalsourceid><addsrcrecordid>eNpVkUtrwzAQhE1poaHNH-jJx16c6mXJuhRC0kcgkEvbq9hI68TBsVzJKeTf13lQmr3sMjt8c5gkeaBkxHmhn8o27lcjRhgbUdIril0lAyqlyChRxfW_-zYZxrgh_QjCCGGDZDqfjrMlRHRp59vKplvvsK6aVVr6kE4WX7NpRnUWsIau98TWhy6mASNCsOu0C9i4eJ_clFBHHJ73XfL5-vIxec_mi7fZZDzPrBB5lzmWg3SWSccF0YKALEvkhQSHKAUFdJZqRZlVGilyRVFrXQhbUKpUzoHfJbMT13nYmDZUWwh746EyR8GHlYHQVbZGw1VeSpCS57YQBeBSKZIvNXPOMcd43rOeT6x2t9z2ydh0AeoL6OWnqdZm5X-MVkTk5AB4PAOC_95h7My2ihbrGhr0u2iYEkJKVWjZW9nJaoOPMWD5F0OJOVRojhWaQ4XmXCH_BVYrj2Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2744667896</pqid></control><display><type>article</type><title>LDA-based topic modeling for COVID-19-related sports research trends</title><source>PubMed Central</source><creator>Lee, Jea Woog ; Kim, YoungBin ; Han, Doug Hyun</creator><creatorcontrib>Lee, Jea Woog ; Kim, YoungBin ; Han, Doug Hyun</creatorcontrib><description>IntroductionThe COVID-19 pandemic could generate a turning point for introducing a new system for sports participation and business. The purpose of this study is to explore trends and topic structures of COVID-19-related sports research by analyzing the relevant literature. MethodsSports studies related to COVID-19 were collected in searching international academic databases. After the pre-processing step using the refinement and morpheme analysis function of the Net Miner program, topic modeling and social network analysis were used to analyze Journal Citation Reports found using the search term 'COVID-19 sports'. ResultsAs a result, this study used subject modeling to reveal important potential topics in COVID-19-related sports research articles. 'Sports participation', 'elite players', and 'sports industry' were macroscopically classified, and detailed research topics could be identified from each division. ConclusionThis study revealed important latent topics from COVID-19-related sports research articles using topic modeling. The results of the research elucidate the structure of academic knowledge on this topic and provide guidance for future research.</description><identifier>ISSN: 1664-1078</identifier><identifier>EISSN: 1664-1078</identifier><identifier>DOI: 10.3389/fpsyg.2022.1033872</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>COVID-19 ; data science ; LDA algorithm ; Psychology ; research trend ; sport ; topic modeling</subject><ispartof>Frontiers in psychology, 2022-11, Vol.13, p.1033872-1033872</ispartof><rights>Copyright © 2022 Lee, Kim and Han. 2022 Lee, Kim and Han</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3</citedby><cites>FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704505/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9704505/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Lee, Jea Woog</creatorcontrib><creatorcontrib>Kim, YoungBin</creatorcontrib><creatorcontrib>Han, Doug Hyun</creatorcontrib><title>LDA-based topic modeling for COVID-19-related sports research trends</title><title>Frontiers in psychology</title><description>IntroductionThe COVID-19 pandemic could generate a turning point for introducing a new system for sports participation and business. The purpose of this study is to explore trends and topic structures of COVID-19-related sports research by analyzing the relevant literature. MethodsSports studies related to COVID-19 were collected in searching international academic databases. After the pre-processing step using the refinement and morpheme analysis function of the Net Miner program, topic modeling and social network analysis were used to analyze Journal Citation Reports found using the search term 'COVID-19 sports'. ResultsAs a result, this study used subject modeling to reveal important potential topics in COVID-19-related sports research articles. 'Sports participation', 'elite players', and 'sports industry' were macroscopically classified, and detailed research topics could be identified from each division. ConclusionThis study revealed important latent topics from COVID-19-related sports research articles using topic modeling. The results of the research elucidate the structure of academic knowledge on this topic and provide guidance for future research.</description><subject>COVID-19</subject><subject>data science</subject><subject>LDA algorithm</subject><subject>Psychology</subject><subject>research trend</subject><subject>sport</subject><subject>topic modeling</subject><issn>1664-1078</issn><issn>1664-1078</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkUtrwzAQhE1poaHNH-jJx16c6mXJuhRC0kcgkEvbq9hI68TBsVzJKeTf13lQmr3sMjt8c5gkeaBkxHmhn8o27lcjRhgbUdIril0lAyqlyChRxfW_-zYZxrgh_QjCCGGDZDqfjrMlRHRp59vKplvvsK6aVVr6kE4WX7NpRnUWsIau98TWhy6mASNCsOu0C9i4eJ_clFBHHJ73XfL5-vIxec_mi7fZZDzPrBB5lzmWg3SWSccF0YKALEvkhQSHKAUFdJZqRZlVGilyRVFrXQhbUKpUzoHfJbMT13nYmDZUWwh746EyR8GHlYHQVbZGw1VeSpCS57YQBeBSKZIvNXPOMcd43rOeT6x2t9z2ydh0AeoL6OWnqdZm5X-MVkTk5AB4PAOC_95h7My2ihbrGhr0u2iYEkJKVWjZW9nJaoOPMWD5F0OJOVRojhWaQ4XmXCH_BVYrj2Y</recordid><startdate>20221114</startdate><enddate>20221114</enddate><creator>Lee, Jea Woog</creator><creator>Kim, YoungBin</creator><creator>Han, Doug Hyun</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20221114</creationdate><title>LDA-based topic modeling for COVID-19-related sports research trends</title><author>Lee, Jea Woog ; Kim, YoungBin ; Han, Doug Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>COVID-19</topic><topic>data science</topic><topic>LDA algorithm</topic><topic>Psychology</topic><topic>research trend</topic><topic>sport</topic><topic>topic modeling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jea Woog</creatorcontrib><creatorcontrib>Kim, YoungBin</creatorcontrib><creatorcontrib>Han, Doug Hyun</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Frontiers in psychology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jea Woog</au><au>Kim, YoungBin</au><au>Han, Doug Hyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LDA-based topic modeling for COVID-19-related sports research trends</atitle><jtitle>Frontiers in psychology</jtitle><date>2022-11-14</date><risdate>2022</risdate><volume>13</volume><spage>1033872</spage><epage>1033872</epage><pages>1033872-1033872</pages><issn>1664-1078</issn><eissn>1664-1078</eissn><abstract>IntroductionThe COVID-19 pandemic could generate a turning point for introducing a new system for sports participation and business. The purpose of this study is to explore trends and topic structures of COVID-19-related sports research by analyzing the relevant literature. MethodsSports studies related to COVID-19 were collected in searching international academic databases. After the pre-processing step using the refinement and morpheme analysis function of the Net Miner program, topic modeling and social network analysis were used to analyze Journal Citation Reports found using the search term 'COVID-19 sports'. ResultsAs a result, this study used subject modeling to reveal important potential topics in COVID-19-related sports research articles. 'Sports participation', 'elite players', and 'sports industry' were macroscopically classified, and detailed research topics could be identified from each division. ConclusionThis study revealed important latent topics from COVID-19-related sports research articles using topic modeling. The results of the research elucidate the structure of academic knowledge on this topic and provide guidance for future research.</abstract><pub>Frontiers Media S.A</pub><doi>10.3389/fpsyg.2022.1033872</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1664-1078 |
ispartof | Frontiers in psychology, 2022-11, Vol.13, p.1033872-1033872 |
issn | 1664-1078 1664-1078 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_375f6a6635c848aeb7705b92ddd2d235 |
source | PubMed Central |
subjects | COVID-19 data science LDA algorithm Psychology research trend sport topic modeling |
title | LDA-based topic modeling for COVID-19-related sports research trends |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T08%3A25%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LDA-based%20topic%20modeling%20for%20COVID-19-related%20sports%20research%20trends&rft.jtitle=Frontiers%20in%20psychology&rft.au=Lee,%20Jea%20Woog&rft.date=2022-11-14&rft.volume=13&rft.spage=1033872&rft.epage=1033872&rft.pages=1033872-1033872&rft.issn=1664-1078&rft.eissn=1664-1078&rft_id=info:doi/10.3389/fpsyg.2022.1033872&rft_dat=%3Cproquest_doaj_%3E2744667896%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c445t-d25a6dc26d340940a6ffe386adee641aedc19712c79e1e371e99984c8117753a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2744667896&rft_id=info:pmid/&rfr_iscdi=true |