Loading…

Structural Modeling of Chromatin Integrates Genome Features and Reveals Chromosome Folding Principle

How chromosomes fold into 3D structures and how genome functions are affected or even controlled by their spatial organization remain challenging questions. Hi-C experiment has provided important structural insights for chromosome, and Hi-C data are used here to construct the 3D chromatin structure...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2017-06, Vol.7 (1), p.2818-11, Article 2818
Main Authors: Xie, Wen Jun, Meng, Luming, Liu, Sirui, Zhang, Ling, Cai, Xiaoxia, Gao, Yi Qin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c540t-55589e8c2817496d593a3ae8277fca18beab3db59b41d07ab232bd1bedd31de53
cites cdi_FETCH-LOGICAL-c540t-55589e8c2817496d593a3ae8277fca18beab3db59b41d07ab232bd1bedd31de53
container_end_page 11
container_issue 1
container_start_page 2818
container_title Scientific reports
container_volume 7
creator Xie, Wen Jun
Meng, Luming
Liu, Sirui
Zhang, Ling
Cai, Xiaoxia
Gao, Yi Qin
description How chromosomes fold into 3D structures and how genome functions are affected or even controlled by their spatial organization remain challenging questions. Hi-C experiment has provided important structural insights for chromosome, and Hi-C data are used here to construct the 3D chromatin structure which are characterized by two spatially segregated chromatin compartments A and B. By mapping a plethora of genome features onto the constructed 3D chromatin model, we show vividly the close connection between genome properties and the spatial organization of chromatin. We are able to dissect the whole chromatin into two types of chromatin domains which have clearly different Hi-C contact patterns as well as different sizes of chromatin loops. The two chromatin types can be respectively regarded as the basic units of chromatin compartments A and B, and also spatially segregate from each other as the two chromatin compartments. Therefore, the chromatin loops segregate in the space according to their sizes, suggesting the excluded volume or entropic effect in chromatin compartmentalization as well as chromosome positioning. Taken together, these results provide clues to the folding principles of chromosomes, their spatial organization, and the resulted clustering of many genome features in the 3D space.
doi_str_mv 10.1038/s41598-017-02923-6
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_37867cf56480463fb8f78b81b1cbcf9e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_37867cf56480463fb8f78b81b1cbcf9e</doaj_id><sourcerecordid>1955526546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c540t-55589e8c2817496d593a3ae8277fca18beab3db59b41d07ab232bd1bedd31de53</originalsourceid><addsrcrecordid>eNp1kktv1DAQxyMEolXpF-CAInHhEvAzsS9IaEXLSkUgHmfLj0nqVWIvdlKJb493U6otEr74Mb_5e2b0r6qXGL3FiIp3mWEuRYNw1yAiCW3aJ9U5QYw3hBLy9OR8Vl3mvENlcSIZls-rMyK4EISh88p9n9Ni5yXpsf4cHYw-DHXs681tipOefai3YYYh6RlyfQ0hTlBfgS4J5a6Dq7_BHegxrwkxH-NxdAeZr8kH6_cjvKie9YWBy_v9ovp59fHH5lNz8-V6u_lw01jO0NxwzoUEYYnAHZOt45JqqkGQruutxsKANtQZLg3DDnXalO6Mwwaco9gBpxfVdtV1Ue_UPvlJp98qaq-ODzENSqfZ2xEU7UTb2Z63TCDW0t6IvhNGYIOtsb2EovV-1dovZgJnIcxlRo9EH0eCv1VDvFOctQiLQzFv7gVS_LVAntXks4Vx1AHikhWWqEOIsZYU9PU_6C4uKZRRFapMhbRFtFBkpWyKOSfoH4rBSB08oVZPqOIJdfSEOiS9Om3jIeWvAwpAVyCXUBggnfz9f9k_AmTDKw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1955526546</pqid></control><display><type>article</type><title>Structural Modeling of Chromatin Integrates Genome Features and Reveals Chromosome Folding Principle</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Xie, Wen Jun ; Meng, Luming ; Liu, Sirui ; Zhang, Ling ; Cai, Xiaoxia ; Gao, Yi Qin</creator><creatorcontrib>Xie, Wen Jun ; Meng, Luming ; Liu, Sirui ; Zhang, Ling ; Cai, Xiaoxia ; Gao, Yi Qin</creatorcontrib><description>How chromosomes fold into 3D structures and how genome functions are affected or even controlled by their spatial organization remain challenging questions. Hi-C experiment has provided important structural insights for chromosome, and Hi-C data are used here to construct the 3D chromatin structure which are characterized by two spatially segregated chromatin compartments A and B. By mapping a plethora of genome features onto the constructed 3D chromatin model, we show vividly the close connection between genome properties and the spatial organization of chromatin. We are able to dissect the whole chromatin into two types of chromatin domains which have clearly different Hi-C contact patterns as well as different sizes of chromatin loops. The two chromatin types can be respectively regarded as the basic units of chromatin compartments A and B, and also spatially segregate from each other as the two chromatin compartments. Therefore, the chromatin loops segregate in the space according to their sizes, suggesting the excluded volume or entropic effect in chromatin compartmentalization as well as chromosome positioning. Taken together, these results provide clues to the folding principles of chromosomes, their spatial organization, and the resulted clustering of many genome features in the 3D space.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-017-02923-6</identifier><identifier>PMID: 28588240</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/114/2397 ; 631/57/2266 ; Cell Compartmentation - genetics ; Chromatin ; Chromatin - genetics ; Chromatin - ultrastructure ; Chromosome Segregation - genetics ; Chromosomes ; Chromosomes - genetics ; Chromosomes - ultrastructure ; Gene mapping ; Genome, Human ; Genomes ; Humanities and Social Sciences ; Humans ; Models, Genetic ; multidisciplinary ; Science ; Science (multidisciplinary)</subject><ispartof>Scientific reports, 2017-06, Vol.7 (1), p.2818-11, Article 2818</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Nature Publishing Group Jun 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c540t-55589e8c2817496d593a3ae8277fca18beab3db59b41d07ab232bd1bedd31de53</citedby><cites>FETCH-LOGICAL-c540t-55589e8c2817496d593a3ae8277fca18beab3db59b41d07ab232bd1bedd31de53</cites><orcidid>0000-0002-4309-9376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1955526546/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1955526546?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25731,27901,27902,36989,36990,44566,53766,53768,74869</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28588240$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Wen Jun</creatorcontrib><creatorcontrib>Meng, Luming</creatorcontrib><creatorcontrib>Liu, Sirui</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Cai, Xiaoxia</creatorcontrib><creatorcontrib>Gao, Yi Qin</creatorcontrib><title>Structural Modeling of Chromatin Integrates Genome Features and Reveals Chromosome Folding Principle</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>How chromosomes fold into 3D structures and how genome functions are affected or even controlled by their spatial organization remain challenging questions. Hi-C experiment has provided important structural insights for chromosome, and Hi-C data are used here to construct the 3D chromatin structure which are characterized by two spatially segregated chromatin compartments A and B. By mapping a plethora of genome features onto the constructed 3D chromatin model, we show vividly the close connection between genome properties and the spatial organization of chromatin. We are able to dissect the whole chromatin into two types of chromatin domains which have clearly different Hi-C contact patterns as well as different sizes of chromatin loops. The two chromatin types can be respectively regarded as the basic units of chromatin compartments A and B, and also spatially segregate from each other as the two chromatin compartments. Therefore, the chromatin loops segregate in the space according to their sizes, suggesting the excluded volume or entropic effect in chromatin compartmentalization as well as chromosome positioning. Taken together, these results provide clues to the folding principles of chromosomes, their spatial organization, and the resulted clustering of many genome features in the 3D space.</description><subject>631/114/2397</subject><subject>631/57/2266</subject><subject>Cell Compartmentation - genetics</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>Chromatin - ultrastructure</subject><subject>Chromosome Segregation - genetics</subject><subject>Chromosomes</subject><subject>Chromosomes - genetics</subject><subject>Chromosomes - ultrastructure</subject><subject>Gene mapping</subject><subject>Genome, Human</subject><subject>Genomes</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>Models, Genetic</subject><subject>multidisciplinary</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kktv1DAQxyMEolXpF-CAInHhEvAzsS9IaEXLSkUgHmfLj0nqVWIvdlKJb493U6otEr74Mb_5e2b0r6qXGL3FiIp3mWEuRYNw1yAiCW3aJ9U5QYw3hBLy9OR8Vl3mvENlcSIZls-rMyK4EISh88p9n9Ni5yXpsf4cHYw-DHXs681tipOefai3YYYh6RlyfQ0hTlBfgS4J5a6Dq7_BHegxrwkxH-NxdAeZr8kH6_cjvKie9YWBy_v9ovp59fHH5lNz8-V6u_lw01jO0NxwzoUEYYnAHZOt45JqqkGQruutxsKANtQZLg3DDnXalO6Mwwaco9gBpxfVdtV1Ue_UPvlJp98qaq-ODzENSqfZ2xEU7UTb2Z63TCDW0t6IvhNGYIOtsb2EovV-1dovZgJnIcxlRo9EH0eCv1VDvFOctQiLQzFv7gVS_LVAntXks4Vx1AHikhWWqEOIsZYU9PU_6C4uKZRRFapMhbRFtFBkpWyKOSfoH4rBSB08oVZPqOIJdfSEOiS9Om3jIeWvAwpAVyCXUBggnfz9f9k_AmTDKw</recordid><startdate>20170606</startdate><enddate>20170606</enddate><creator>Xie, Wen Jun</creator><creator>Meng, Luming</creator><creator>Liu, Sirui</creator><creator>Zhang, Ling</creator><creator>Cai, Xiaoxia</creator><creator>Gao, Yi Qin</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4309-9376</orcidid></search><sort><creationdate>20170606</creationdate><title>Structural Modeling of Chromatin Integrates Genome Features and Reveals Chromosome Folding Principle</title><author>Xie, Wen Jun ; Meng, Luming ; Liu, Sirui ; Zhang, Ling ; Cai, Xiaoxia ; Gao, Yi Qin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c540t-55589e8c2817496d593a3ae8277fca18beab3db59b41d07ab232bd1bedd31de53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>631/114/2397</topic><topic>631/57/2266</topic><topic>Cell Compartmentation - genetics</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>Chromatin - ultrastructure</topic><topic>Chromosome Segregation - genetics</topic><topic>Chromosomes</topic><topic>Chromosomes - genetics</topic><topic>Chromosomes - ultrastructure</topic><topic>Gene mapping</topic><topic>Genome, Human</topic><topic>Genomes</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>Models, Genetic</topic><topic>multidisciplinary</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Wen Jun</creatorcontrib><creatorcontrib>Meng, Luming</creatorcontrib><creatorcontrib>Liu, Sirui</creatorcontrib><creatorcontrib>Zhang, Ling</creatorcontrib><creatorcontrib>Cai, Xiaoxia</creatorcontrib><creatorcontrib>Gao, Yi Qin</creatorcontrib><collection>SpringerOpen</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Wen Jun</au><au>Meng, Luming</au><au>Liu, Sirui</au><au>Zhang, Ling</au><au>Cai, Xiaoxia</au><au>Gao, Yi Qin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Modeling of Chromatin Integrates Genome Features and Reveals Chromosome Folding Principle</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2017-06-06</date><risdate>2017</risdate><volume>7</volume><issue>1</issue><spage>2818</spage><epage>11</epage><pages>2818-11</pages><artnum>2818</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>How chromosomes fold into 3D structures and how genome functions are affected or even controlled by their spatial organization remain challenging questions. Hi-C experiment has provided important structural insights for chromosome, and Hi-C data are used here to construct the 3D chromatin structure which are characterized by two spatially segregated chromatin compartments A and B. By mapping a plethora of genome features onto the constructed 3D chromatin model, we show vividly the close connection between genome properties and the spatial organization of chromatin. We are able to dissect the whole chromatin into two types of chromatin domains which have clearly different Hi-C contact patterns as well as different sizes of chromatin loops. The two chromatin types can be respectively regarded as the basic units of chromatin compartments A and B, and also spatially segregate from each other as the two chromatin compartments. Therefore, the chromatin loops segregate in the space according to their sizes, suggesting the excluded volume or entropic effect in chromatin compartmentalization as well as chromosome positioning. Taken together, these results provide clues to the folding principles of chromosomes, their spatial organization, and the resulted clustering of many genome features in the 3D space.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28588240</pmid><doi>10.1038/s41598-017-02923-6</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4309-9376</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2017-06, Vol.7 (1), p.2818-11, Article 2818
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_37867cf56480463fb8f78b81b1cbcf9e
source Publicly Available Content (ProQuest); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 631/114/2397
631/57/2266
Cell Compartmentation - genetics
Chromatin
Chromatin - genetics
Chromatin - ultrastructure
Chromosome Segregation - genetics
Chromosomes
Chromosomes - genetics
Chromosomes - ultrastructure
Gene mapping
Genome, Human
Genomes
Humanities and Social Sciences
Humans
Models, Genetic
multidisciplinary
Science
Science (multidisciplinary)
title Structural Modeling of Chromatin Integrates Genome Features and Reveals Chromosome Folding Principle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Modeling%20of%20Chromatin%20Integrates%20Genome%20Features%20and%20Reveals%20Chromosome%20Folding%20Principle&rft.jtitle=Scientific%20reports&rft.au=Xie,%20Wen%20Jun&rft.date=2017-06-06&rft.volume=7&rft.issue=1&rft.spage=2818&rft.epage=11&rft.pages=2818-11&rft.artnum=2818&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-017-02923-6&rft_dat=%3Cproquest_doaj_%3E1955526546%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c540t-55589e8c2817496d593a3ae8277fca18beab3db59b41d07ab232bd1bedd31de53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1955526546&rft_id=info:pmid/28588240&rfr_iscdi=true