Loading…
Modeling the marine chromium cycle: new constraints on global-scale processes
Chromium (Cr) and its isotopes hold great promise as a tracer of past oxygenation and marine biological activity due to the contrasted chemical properties of its two main oxidation states, Cr(III) and Cr(VI), and the associated isotope fractionation during redox transformations. However, to date the...
Saved in:
Published in: | Biogeosciences 2021-10, Vol.18 (19), p.5447-5463 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3 |
container_end_page | 5463 |
container_issue | 19 |
container_start_page | 5447 |
container_title | Biogeosciences |
container_volume | 18 |
creator | Pöppelmeier, Frerk Janssen, David J Jaccard, Samuel L Stocker, Thomas F |
description | Chromium (Cr) and its isotopes hold great promise as a
tracer of past oxygenation and marine biological activity due to the
contrasted chemical properties of its two main oxidation states, Cr(III) and
Cr(VI), and the associated isotope fractionation during redox
transformations. However, to date the marine Cr cycle remains poorly
constrained due to insufficient knowledge about sources and sinks and the
influence of biological activity on redox reactions. We therefore
implemented the two oxidation states of Cr in the Bern3D Earth system model
of intermediate complexity in order to gain an improved understanding on
the mechanisms that modulate the spatial distribution of Cr in the ocean.
Due to the computational efficiency of the Bern3D model we are able to
explore and constrain the range of a wide array of parameters. Our model
simulates vertical, meridional, and inter-basin Cr concentration gradients
in good agreement with observations. We find a mean ocean residence time of
Cr between 5 and 8 kyr and a benthic flux, emanating from sediment
surfaces, of 0.1–0.2 nmol cm−2 yr−1, both in the range of previous
estimates. We further explore the origin of regional model–data mismatches
through a number of sensitivity experiments. These indicate that the benthic
Cr flux may be substantially lower in the Arctic than elsewhere. In
addition, we find that a refined representation of oxygen minimum zones and
their potential to reduce Cr yield Cr(III) concentrations and Cr removal
rates in these regions in much improved agreement with observational data.
Yet, further research is required to better understand the processes that
govern these critical regions for Cr cycling. |
doi_str_mv | 10.5194/bg-18-5447-2021 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_378a0e8da10d4c4cb8fc94718cda86bd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678259311</galeid><doaj_id>oai_doaj_org_article_378a0e8da10d4c4cb8fc94718cda86bd</doaj_id><sourcerecordid>A678259311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3</originalsourceid><addsrcrecordid>eNptks1r3DAQxU1poGnSc6-CnnpworEkS-4thH4sJBSa9Czk0djRYlup5KXNf19tt7RdKDqMGH4zvDe8qnoN_EJBJy_7sQZTKyl13fAGnlWnoJu2lmC65__8X1Qvc95yLgw36rS6vY2eprCMbH0gNrsUFmL4kOIcdjPDJ5zoHVvoO8O45DW5sKyZxYWNU-zdVGd0E7HHFJFypnxenQxuyvTqdz2rvn54f3_9qb75_HFzfXVTo9R6raUSnCR1glBzaLBtaABlWieEN6AG0F64hggMB-NRdlIA6bbthEIxGC_Oqs1hr49uax9TKMKfbHTB_mrENFqX1lDEW6GN42S8A-4lSuzNgJ3UYNA70_b7XW8Ou4qLbzvKq93GXVqKfNso3SnVatP9pcZi2IZliOUYOIeM9qoAjeoEQKEu_kOV52kO5YI0hNI_Gnh7NFCYlX6so9vlbDd3X47ZywOLKeacaPhjHLjdR8D2owVj9xGw-wiIn719oQY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579556789</pqid></control><display><type>article</type><title>Modeling the marine chromium cycle: new constraints on global-scale processes</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><creator>Pöppelmeier, Frerk ; Janssen, David J ; Jaccard, Samuel L ; Stocker, Thomas F</creator><creatorcontrib>Pöppelmeier, Frerk ; Janssen, David J ; Jaccard, Samuel L ; Stocker, Thomas F</creatorcontrib><description>Chromium (Cr) and its isotopes hold great promise as a
tracer of past oxygenation and marine biological activity due to the
contrasted chemical properties of its two main oxidation states, Cr(III) and
Cr(VI), and the associated isotope fractionation during redox
transformations. However, to date the marine Cr cycle remains poorly
constrained due to insufficient knowledge about sources and sinks and the
influence of biological activity on redox reactions. We therefore
implemented the two oxidation states of Cr in the Bern3D Earth system model
of intermediate complexity in order to gain an improved understanding on
the mechanisms that modulate the spatial distribution of Cr in the ocean.
Due to the computational efficiency of the Bern3D model we are able to
explore and constrain the range of a wide array of parameters. Our model
simulates vertical, meridional, and inter-basin Cr concentration gradients
in good agreement with observations. We find a mean ocean residence time of
Cr between 5 and 8 kyr and a benthic flux, emanating from sediment
surfaces, of 0.1–0.2 nmol cm−2 yr−1, both in the range of previous
estimates. We further explore the origin of regional model–data mismatches
through a number of sensitivity experiments. These indicate that the benthic
Cr flux may be substantially lower in the Arctic than elsewhere. In
addition, we find that a refined representation of oxygen minimum zones and
their potential to reduce Cr yield Cr(III) concentrations and Cr removal
rates in these regions in much improved agreement with observational data.
Yet, further research is required to better understand the processes that
govern these critical regions for Cr cycling.</description><identifier>ISSN: 1726-4189</identifier><identifier>ISSN: 1726-4170</identifier><identifier>EISSN: 1726-4189</identifier><identifier>DOI: 10.5194/bg-18-5447-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Benthos ; Biological activity ; Chemical properties ; Chemicophysical properties ; Chromium ; Computer applications ; Concentration gradient ; Constraints ; Dust ; Fractionation ; Groundwater discharge ; Isotope fractionation ; Isotopes ; Marine biology ; Modelling ; Oceans ; Oxidation ; Oxidoreductions ; Oxygen ; Oxygenation ; Polar environments ; Redox reactions ; Regions ; Residence time ; Sediments ; Spatial distribution ; Tracers ; Tracers (Chemistry) ; Trivalent chromium</subject><ispartof>Biogeosciences, 2021-10, Vol.18 (19), p.5447-5463</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3</citedby><cites>FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3</cites><orcidid>0000-0002-9091-8936 ; 0000-0003-4050-2550 ; 0000-0002-5793-0896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2579556789/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2579556789?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Pöppelmeier, Frerk</creatorcontrib><creatorcontrib>Janssen, David J</creatorcontrib><creatorcontrib>Jaccard, Samuel L</creatorcontrib><creatorcontrib>Stocker, Thomas F</creatorcontrib><title>Modeling the marine chromium cycle: new constraints on global-scale processes</title><title>Biogeosciences</title><description>Chromium (Cr) and its isotopes hold great promise as a
tracer of past oxygenation and marine biological activity due to the
contrasted chemical properties of its two main oxidation states, Cr(III) and
Cr(VI), and the associated isotope fractionation during redox
transformations. However, to date the marine Cr cycle remains poorly
constrained due to insufficient knowledge about sources and sinks and the
influence of biological activity on redox reactions. We therefore
implemented the two oxidation states of Cr in the Bern3D Earth system model
of intermediate complexity in order to gain an improved understanding on
the mechanisms that modulate the spatial distribution of Cr in the ocean.
Due to the computational efficiency of the Bern3D model we are able to
explore and constrain the range of a wide array of parameters. Our model
simulates vertical, meridional, and inter-basin Cr concentration gradients
in good agreement with observations. We find a mean ocean residence time of
Cr between 5 and 8 kyr and a benthic flux, emanating from sediment
surfaces, of 0.1–0.2 nmol cm−2 yr−1, both in the range of previous
estimates. We further explore the origin of regional model–data mismatches
through a number of sensitivity experiments. These indicate that the benthic
Cr flux may be substantially lower in the Arctic than elsewhere. In
addition, we find that a refined representation of oxygen minimum zones and
their potential to reduce Cr yield Cr(III) concentrations and Cr removal
rates in these regions in much improved agreement with observational data.
Yet, further research is required to better understand the processes that
govern these critical regions for Cr cycling.</description><subject>Benthos</subject><subject>Biological activity</subject><subject>Chemical properties</subject><subject>Chemicophysical properties</subject><subject>Chromium</subject><subject>Computer applications</subject><subject>Concentration gradient</subject><subject>Constraints</subject><subject>Dust</subject><subject>Fractionation</subject><subject>Groundwater discharge</subject><subject>Isotope fractionation</subject><subject>Isotopes</subject><subject>Marine biology</subject><subject>Modelling</subject><subject>Oceans</subject><subject>Oxidation</subject><subject>Oxidoreductions</subject><subject>Oxygen</subject><subject>Oxygenation</subject><subject>Polar environments</subject><subject>Redox reactions</subject><subject>Regions</subject><subject>Residence time</subject><subject>Sediments</subject><subject>Spatial distribution</subject><subject>Tracers</subject><subject>Tracers (Chemistry)</subject><subject>Trivalent chromium</subject><issn>1726-4189</issn><issn>1726-4170</issn><issn>1726-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1r3DAQxU1poGnSc6-CnnpworEkS-4thH4sJBSa9Czk0djRYlup5KXNf19tt7RdKDqMGH4zvDe8qnoN_EJBJy_7sQZTKyl13fAGnlWnoJu2lmC65__8X1Qvc95yLgw36rS6vY2eprCMbH0gNrsUFmL4kOIcdjPDJ5zoHVvoO8O45DW5sKyZxYWNU-zdVGd0E7HHFJFypnxenQxuyvTqdz2rvn54f3_9qb75_HFzfXVTo9R6raUSnCR1glBzaLBtaABlWieEN6AG0F64hggMB-NRdlIA6bbthEIxGC_Oqs1hr49uax9TKMKfbHTB_mrENFqX1lDEW6GN42S8A-4lSuzNgJ3UYNA70_b7XW8Ou4qLbzvKq93GXVqKfNso3SnVatP9pcZi2IZliOUYOIeM9qoAjeoEQKEu_kOV52kO5YI0hNI_Gnh7NFCYlX6so9vlbDd3X47ZywOLKeacaPhjHLjdR8D2owVj9xGw-wiIn719oQY</recordid><startdate>20211007</startdate><enddate>20211007</enddate><creator>Pöppelmeier, Frerk</creator><creator>Janssen, David J</creator><creator>Jaccard, Samuel L</creator><creator>Stocker, Thomas F</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QO</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9091-8936</orcidid><orcidid>https://orcid.org/0000-0003-4050-2550</orcidid><orcidid>https://orcid.org/0000-0002-5793-0896</orcidid></search><sort><creationdate>20211007</creationdate><title>Modeling the marine chromium cycle: new constraints on global-scale processes</title><author>Pöppelmeier, Frerk ; Janssen, David J ; Jaccard, Samuel L ; Stocker, Thomas F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Benthos</topic><topic>Biological activity</topic><topic>Chemical properties</topic><topic>Chemicophysical properties</topic><topic>Chromium</topic><topic>Computer applications</topic><topic>Concentration gradient</topic><topic>Constraints</topic><topic>Dust</topic><topic>Fractionation</topic><topic>Groundwater discharge</topic><topic>Isotope fractionation</topic><topic>Isotopes</topic><topic>Marine biology</topic><topic>Modelling</topic><topic>Oceans</topic><topic>Oxidation</topic><topic>Oxidoreductions</topic><topic>Oxygen</topic><topic>Oxygenation</topic><topic>Polar environments</topic><topic>Redox reactions</topic><topic>Regions</topic><topic>Residence time</topic><topic>Sediments</topic><topic>Spatial distribution</topic><topic>Tracers</topic><topic>Tracers (Chemistry)</topic><topic>Trivalent chromium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pöppelmeier, Frerk</creatorcontrib><creatorcontrib>Janssen, David J</creatorcontrib><creatorcontrib>Jaccard, Samuel L</creatorcontrib><creatorcontrib>Stocker, Thomas F</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pöppelmeier, Frerk</au><au>Janssen, David J</au><au>Jaccard, Samuel L</au><au>Stocker, Thomas F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the marine chromium cycle: new constraints on global-scale processes</atitle><jtitle>Biogeosciences</jtitle><date>2021-10-07</date><risdate>2021</risdate><volume>18</volume><issue>19</issue><spage>5447</spage><epage>5463</epage><pages>5447-5463</pages><issn>1726-4189</issn><issn>1726-4170</issn><eissn>1726-4189</eissn><abstract>Chromium (Cr) and its isotopes hold great promise as a
tracer of past oxygenation and marine biological activity due to the
contrasted chemical properties of its two main oxidation states, Cr(III) and
Cr(VI), and the associated isotope fractionation during redox
transformations. However, to date the marine Cr cycle remains poorly
constrained due to insufficient knowledge about sources and sinks and the
influence of biological activity on redox reactions. We therefore
implemented the two oxidation states of Cr in the Bern3D Earth system model
of intermediate complexity in order to gain an improved understanding on
the mechanisms that modulate the spatial distribution of Cr in the ocean.
Due to the computational efficiency of the Bern3D model we are able to
explore and constrain the range of a wide array of parameters. Our model
simulates vertical, meridional, and inter-basin Cr concentration gradients
in good agreement with observations. We find a mean ocean residence time of
Cr between 5 and 8 kyr and a benthic flux, emanating from sediment
surfaces, of 0.1–0.2 nmol cm−2 yr−1, both in the range of previous
estimates. We further explore the origin of regional model–data mismatches
through a number of sensitivity experiments. These indicate that the benthic
Cr flux may be substantially lower in the Arctic than elsewhere. In
addition, we find that a refined representation of oxygen minimum zones and
their potential to reduce Cr yield Cr(III) concentrations and Cr removal
rates in these regions in much improved agreement with observational data.
Yet, further research is required to better understand the processes that
govern these critical regions for Cr cycling.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/bg-18-5447-2021</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9091-8936</orcidid><orcidid>https://orcid.org/0000-0003-4050-2550</orcidid><orcidid>https://orcid.org/0000-0002-5793-0896</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1726-4189 |
ispartof | Biogeosciences, 2021-10, Vol.18 (19), p.5447-5463 |
issn | 1726-4189 1726-4170 1726-4189 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_378a0e8da10d4c4cb8fc94718cda86bd |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals |
subjects | Benthos Biological activity Chemical properties Chemicophysical properties Chromium Computer applications Concentration gradient Constraints Dust Fractionation Groundwater discharge Isotope fractionation Isotopes Marine biology Modelling Oceans Oxidation Oxidoreductions Oxygen Oxygenation Polar environments Redox reactions Regions Residence time Sediments Spatial distribution Tracers Tracers (Chemistry) Trivalent chromium |
title | Modeling the marine chromium cycle: new constraints on global-scale processes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20marine%20chromium%20cycle:%20new%20constraints%20on%20global-scale%20processes&rft.jtitle=Biogeosciences&rft.au=P%C3%B6ppelmeier,%20Frerk&rft.date=2021-10-07&rft.volume=18&rft.issue=19&rft.spage=5447&rft.epage=5463&rft.pages=5447-5463&rft.issn=1726-4189&rft.eissn=1726-4189&rft_id=info:doi/10.5194/bg-18-5447-2021&rft_dat=%3Cgale_doaj_%3EA678259311%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2579556789&rft_id=info:pmid/&rft_galeid=A678259311&rfr_iscdi=true |