Loading…

Modeling the marine chromium cycle: new constraints on global-scale processes

Chromium (Cr) and its isotopes hold great promise as a tracer of past oxygenation and marine biological activity due to the contrasted chemical properties of its two main oxidation states, Cr(III) and Cr(VI), and the associated isotope fractionation during redox transformations. However, to date the...

Full description

Saved in:
Bibliographic Details
Published in:Biogeosciences 2021-10, Vol.18 (19), p.5447-5463
Main Authors: Pöppelmeier, Frerk, Janssen, David J, Jaccard, Samuel L, Stocker, Thomas F
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3
cites cdi_FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3
container_end_page 5463
container_issue 19
container_start_page 5447
container_title Biogeosciences
container_volume 18
creator Pöppelmeier, Frerk
Janssen, David J
Jaccard, Samuel L
Stocker, Thomas F
description Chromium (Cr) and its isotopes hold great promise as a tracer of past oxygenation and marine biological activity due to the contrasted chemical properties of its two main oxidation states, Cr(III) and Cr(VI), and the associated isotope fractionation during redox transformations. However, to date the marine Cr cycle remains poorly constrained due to insufficient knowledge about sources and sinks and the influence of biological activity on redox reactions. We therefore implemented the two oxidation states of Cr in the Bern3D Earth system model of intermediate complexity in order to gain an improved understanding on the mechanisms that modulate the spatial distribution of Cr in the ocean. Due to the computational efficiency of the Bern3D model we are able to explore and constrain the range of a wide array of parameters. Our model simulates vertical, meridional, and inter-basin Cr concentration gradients in good agreement with observations. We find a mean ocean residence time of Cr between 5 and 8 kyr and a benthic flux, emanating from sediment surfaces, of 0.1–0.2 nmol cm−2 yr−1, both in the range of previous estimates. We further explore the origin of regional model–data mismatches through a number of sensitivity experiments. These indicate that the benthic Cr flux may be substantially lower in the Arctic than elsewhere. In addition, we find that a refined representation of oxygen minimum zones and their potential to reduce Cr yield Cr(III) concentrations and Cr removal rates in these regions in much improved agreement with observational data. Yet, further research is required to better understand the processes that govern these critical regions for Cr cycling.
doi_str_mv 10.5194/bg-18-5447-2021
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_378a0e8da10d4c4cb8fc94718cda86bd</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A678259311</galeid><doaj_id>oai_doaj_org_article_378a0e8da10d4c4cb8fc94718cda86bd</doaj_id><sourcerecordid>A678259311</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3</originalsourceid><addsrcrecordid>eNptks1r3DAQxU1poGnSc6-CnnpworEkS-4thH4sJBSa9Czk0djRYlup5KXNf19tt7RdKDqMGH4zvDe8qnoN_EJBJy_7sQZTKyl13fAGnlWnoJu2lmC65__8X1Qvc95yLgw36rS6vY2eprCMbH0gNrsUFmL4kOIcdjPDJ5zoHVvoO8O45DW5sKyZxYWNU-zdVGd0E7HHFJFypnxenQxuyvTqdz2rvn54f3_9qb75_HFzfXVTo9R6raUSnCR1glBzaLBtaABlWieEN6AG0F64hggMB-NRdlIA6bbthEIxGC_Oqs1hr49uax9TKMKfbHTB_mrENFqX1lDEW6GN42S8A-4lSuzNgJ3UYNA70_b7XW8Ou4qLbzvKq93GXVqKfNso3SnVatP9pcZi2IZliOUYOIeM9qoAjeoEQKEu_kOV52kO5YI0hNI_Gnh7NFCYlX6so9vlbDd3X47ZywOLKeacaPhjHLjdR8D2owVj9xGw-wiIn719oQY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2579556789</pqid></control><display><type>article</type><title>Modeling the marine chromium cycle: new constraints on global-scale processes</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><creator>Pöppelmeier, Frerk ; Janssen, David J ; Jaccard, Samuel L ; Stocker, Thomas F</creator><creatorcontrib>Pöppelmeier, Frerk ; Janssen, David J ; Jaccard, Samuel L ; Stocker, Thomas F</creatorcontrib><description>Chromium (Cr) and its isotopes hold great promise as a tracer of past oxygenation and marine biological activity due to the contrasted chemical properties of its two main oxidation states, Cr(III) and Cr(VI), and the associated isotope fractionation during redox transformations. However, to date the marine Cr cycle remains poorly constrained due to insufficient knowledge about sources and sinks and the influence of biological activity on redox reactions. We therefore implemented the two oxidation states of Cr in the Bern3D Earth system model of intermediate complexity in order to gain an improved understanding on the mechanisms that modulate the spatial distribution of Cr in the ocean. Due to the computational efficiency of the Bern3D model we are able to explore and constrain the range of a wide array of parameters. Our model simulates vertical, meridional, and inter-basin Cr concentration gradients in good agreement with observations. We find a mean ocean residence time of Cr between 5 and 8 kyr and a benthic flux, emanating from sediment surfaces, of 0.1–0.2 nmol cm−2 yr−1, both in the range of previous estimates. We further explore the origin of regional model–data mismatches through a number of sensitivity experiments. These indicate that the benthic Cr flux may be substantially lower in the Arctic than elsewhere. In addition, we find that a refined representation of oxygen minimum zones and their potential to reduce Cr yield Cr(III) concentrations and Cr removal rates in these regions in much improved agreement with observational data. Yet, further research is required to better understand the processes that govern these critical regions for Cr cycling.</description><identifier>ISSN: 1726-4189</identifier><identifier>ISSN: 1726-4170</identifier><identifier>EISSN: 1726-4189</identifier><identifier>DOI: 10.5194/bg-18-5447-2021</identifier><language>eng</language><publisher>Katlenburg-Lindau: Copernicus GmbH</publisher><subject>Benthos ; Biological activity ; Chemical properties ; Chemicophysical properties ; Chromium ; Computer applications ; Concentration gradient ; Constraints ; Dust ; Fractionation ; Groundwater discharge ; Isotope fractionation ; Isotopes ; Marine biology ; Modelling ; Oceans ; Oxidation ; Oxidoreductions ; Oxygen ; Oxygenation ; Polar environments ; Redox reactions ; Regions ; Residence time ; Sediments ; Spatial distribution ; Tracers ; Tracers (Chemistry) ; Trivalent chromium</subject><ispartof>Biogeosciences, 2021-10, Vol.18 (19), p.5447-5463</ispartof><rights>COPYRIGHT 2021 Copernicus GmbH</rights><rights>2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3</citedby><cites>FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3</cites><orcidid>0000-0002-9091-8936 ; 0000-0003-4050-2550 ; 0000-0002-5793-0896</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2579556789/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2579556789?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Pöppelmeier, Frerk</creatorcontrib><creatorcontrib>Janssen, David J</creatorcontrib><creatorcontrib>Jaccard, Samuel L</creatorcontrib><creatorcontrib>Stocker, Thomas F</creatorcontrib><title>Modeling the marine chromium cycle: new constraints on global-scale processes</title><title>Biogeosciences</title><description>Chromium (Cr) and its isotopes hold great promise as a tracer of past oxygenation and marine biological activity due to the contrasted chemical properties of its two main oxidation states, Cr(III) and Cr(VI), and the associated isotope fractionation during redox transformations. However, to date the marine Cr cycle remains poorly constrained due to insufficient knowledge about sources and sinks and the influence of biological activity on redox reactions. We therefore implemented the two oxidation states of Cr in the Bern3D Earth system model of intermediate complexity in order to gain an improved understanding on the mechanisms that modulate the spatial distribution of Cr in the ocean. Due to the computational efficiency of the Bern3D model we are able to explore and constrain the range of a wide array of parameters. Our model simulates vertical, meridional, and inter-basin Cr concentration gradients in good agreement with observations. We find a mean ocean residence time of Cr between 5 and 8 kyr and a benthic flux, emanating from sediment surfaces, of 0.1–0.2 nmol cm−2 yr−1, both in the range of previous estimates. We further explore the origin of regional model–data mismatches through a number of sensitivity experiments. These indicate that the benthic Cr flux may be substantially lower in the Arctic than elsewhere. In addition, we find that a refined representation of oxygen minimum zones and their potential to reduce Cr yield Cr(III) concentrations and Cr removal rates in these regions in much improved agreement with observational data. Yet, further research is required to better understand the processes that govern these critical regions for Cr cycling.</description><subject>Benthos</subject><subject>Biological activity</subject><subject>Chemical properties</subject><subject>Chemicophysical properties</subject><subject>Chromium</subject><subject>Computer applications</subject><subject>Concentration gradient</subject><subject>Constraints</subject><subject>Dust</subject><subject>Fractionation</subject><subject>Groundwater discharge</subject><subject>Isotope fractionation</subject><subject>Isotopes</subject><subject>Marine biology</subject><subject>Modelling</subject><subject>Oceans</subject><subject>Oxidation</subject><subject>Oxidoreductions</subject><subject>Oxygen</subject><subject>Oxygenation</subject><subject>Polar environments</subject><subject>Redox reactions</subject><subject>Regions</subject><subject>Residence time</subject><subject>Sediments</subject><subject>Spatial distribution</subject><subject>Tracers</subject><subject>Tracers (Chemistry)</subject><subject>Trivalent chromium</subject><issn>1726-4189</issn><issn>1726-4170</issn><issn>1726-4189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptks1r3DAQxU1poGnSc6-CnnpworEkS-4thH4sJBSa9Czk0djRYlup5KXNf19tt7RdKDqMGH4zvDe8qnoN_EJBJy_7sQZTKyl13fAGnlWnoJu2lmC65__8X1Qvc95yLgw36rS6vY2eprCMbH0gNrsUFmL4kOIcdjPDJ5zoHVvoO8O45DW5sKyZxYWNU-zdVGd0E7HHFJFypnxenQxuyvTqdz2rvn54f3_9qb75_HFzfXVTo9R6raUSnCR1glBzaLBtaABlWieEN6AG0F64hggMB-NRdlIA6bbthEIxGC_Oqs1hr49uax9TKMKfbHTB_mrENFqX1lDEW6GN42S8A-4lSuzNgJ3UYNA70_b7XW8Ou4qLbzvKq93GXVqKfNso3SnVatP9pcZi2IZliOUYOIeM9qoAjeoEQKEu_kOV52kO5YI0hNI_Gnh7NFCYlX6so9vlbDd3X47ZywOLKeacaPhjHLjdR8D2owVj9xGw-wiIn719oQY</recordid><startdate>20211007</startdate><enddate>20211007</enddate><creator>Pöppelmeier, Frerk</creator><creator>Janssen, David J</creator><creator>Jaccard, Samuel L</creator><creator>Stocker, Thomas F</creator><general>Copernicus GmbH</general><general>Copernicus Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7QO</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BFMQW</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H95</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L6V</scope><scope>LK8</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9091-8936</orcidid><orcidid>https://orcid.org/0000-0003-4050-2550</orcidid><orcidid>https://orcid.org/0000-0002-5793-0896</orcidid></search><sort><creationdate>20211007</creationdate><title>Modeling the marine chromium cycle: new constraints on global-scale processes</title><author>Pöppelmeier, Frerk ; Janssen, David J ; Jaccard, Samuel L ; Stocker, Thomas F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Benthos</topic><topic>Biological activity</topic><topic>Chemical properties</topic><topic>Chemicophysical properties</topic><topic>Chromium</topic><topic>Computer applications</topic><topic>Concentration gradient</topic><topic>Constraints</topic><topic>Dust</topic><topic>Fractionation</topic><topic>Groundwater discharge</topic><topic>Isotope fractionation</topic><topic>Isotopes</topic><topic>Marine biology</topic><topic>Modelling</topic><topic>Oceans</topic><topic>Oxidation</topic><topic>Oxidoreductions</topic><topic>Oxygen</topic><topic>Oxygenation</topic><topic>Polar environments</topic><topic>Redox reactions</topic><topic>Regions</topic><topic>Residence time</topic><topic>Sediments</topic><topic>Spatial distribution</topic><topic>Tracers</topic><topic>Tracers (Chemistry)</topic><topic>Trivalent chromium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pöppelmeier, Frerk</creatorcontrib><creatorcontrib>Janssen, David J</creatorcontrib><creatorcontrib>Jaccard, Samuel L</creatorcontrib><creatorcontrib>Stocker, Thomas F</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Continental Europe Database</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Biogeosciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pöppelmeier, Frerk</au><au>Janssen, David J</au><au>Jaccard, Samuel L</au><au>Stocker, Thomas F</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the marine chromium cycle: new constraints on global-scale processes</atitle><jtitle>Biogeosciences</jtitle><date>2021-10-07</date><risdate>2021</risdate><volume>18</volume><issue>19</issue><spage>5447</spage><epage>5463</epage><pages>5447-5463</pages><issn>1726-4189</issn><issn>1726-4170</issn><eissn>1726-4189</eissn><abstract>Chromium (Cr) and its isotopes hold great promise as a tracer of past oxygenation and marine biological activity due to the contrasted chemical properties of its two main oxidation states, Cr(III) and Cr(VI), and the associated isotope fractionation during redox transformations. However, to date the marine Cr cycle remains poorly constrained due to insufficient knowledge about sources and sinks and the influence of biological activity on redox reactions. We therefore implemented the two oxidation states of Cr in the Bern3D Earth system model of intermediate complexity in order to gain an improved understanding on the mechanisms that modulate the spatial distribution of Cr in the ocean. Due to the computational efficiency of the Bern3D model we are able to explore and constrain the range of a wide array of parameters. Our model simulates vertical, meridional, and inter-basin Cr concentration gradients in good agreement with observations. We find a mean ocean residence time of Cr between 5 and 8 kyr and a benthic flux, emanating from sediment surfaces, of 0.1–0.2 nmol cm−2 yr−1, both in the range of previous estimates. We further explore the origin of regional model–data mismatches through a number of sensitivity experiments. These indicate that the benthic Cr flux may be substantially lower in the Arctic than elsewhere. In addition, we find that a refined representation of oxygen minimum zones and their potential to reduce Cr yield Cr(III) concentrations and Cr removal rates in these regions in much improved agreement with observational data. Yet, further research is required to better understand the processes that govern these critical regions for Cr cycling.</abstract><cop>Katlenburg-Lindau</cop><pub>Copernicus GmbH</pub><doi>10.5194/bg-18-5447-2021</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9091-8936</orcidid><orcidid>https://orcid.org/0000-0003-4050-2550</orcidid><orcidid>https://orcid.org/0000-0002-5793-0896</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1726-4189
ispartof Biogeosciences, 2021-10, Vol.18 (19), p.5447-5463
issn 1726-4189
1726-4170
1726-4189
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_378a0e8da10d4c4cb8fc94718cda86bd
source Publicly Available Content Database; DOAJ Directory of Open Access Journals
subjects Benthos
Biological activity
Chemical properties
Chemicophysical properties
Chromium
Computer applications
Concentration gradient
Constraints
Dust
Fractionation
Groundwater discharge
Isotope fractionation
Isotopes
Marine biology
Modelling
Oceans
Oxidation
Oxidoreductions
Oxygen
Oxygenation
Polar environments
Redox reactions
Regions
Residence time
Sediments
Spatial distribution
Tracers
Tracers (Chemistry)
Trivalent chromium
title Modeling the marine chromium cycle: new constraints on global-scale processes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T20%3A45%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20marine%20chromium%20cycle:%20new%20constraints%20on%20global-scale%20processes&rft.jtitle=Biogeosciences&rft.au=P%C3%B6ppelmeier,%20Frerk&rft.date=2021-10-07&rft.volume=18&rft.issue=19&rft.spage=5447&rft.epage=5463&rft.pages=5447-5463&rft.issn=1726-4189&rft.eissn=1726-4189&rft_id=info:doi/10.5194/bg-18-5447-2021&rft_dat=%3Cgale_doaj_%3EA678259311%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c477t-4530e4e93ec7012c62ef1586a33d815f17d3a2ee18018dc49431e766935c3f8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2579556789&rft_id=info:pmid/&rft_galeid=A678259311&rfr_iscdi=true