Loading…
Perspectives of direct detection of supersymmetric dark matter in the NMSSM
In the Next-to-Minimal-Supersymmetric-Standard-Model (NMSSM) the lightest supersymmetric particle (LSP) is a candidate for the dark matter (DM) in the universe. It is a mixture from the various gauginos and Higgsinos and can be bino-, Higgsino- or singlino-dominated. Singlino-dominated LSPs can have...
Saved in:
Published in: | Physics letters. B 2017-08, Vol.771, p.611-618 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the Next-to-Minimal-Supersymmetric-Standard-Model (NMSSM) the lightest supersymmetric particle (LSP) is a candidate for the dark matter (DM) in the universe. It is a mixture from the various gauginos and Higgsinos and can be bino-, Higgsino- or singlino-dominated. Singlino-dominated LSPs can have very low cross sections below the neutrino background from coherent neutrino scattering which is limiting the sensitivity of future direct DM search experiments. However, previous studies suggested that the combination of both, the spin-dependent (SD) and spin-independent (SI) searches are sensitive in complementary regions of parameter space, so considering both searches will allow to explore practically the whole parameter space of the NMSSM. In this letter, the different scenarios are investigated with a new scanning technique, which reveals that significant regions of the NMSSM parameter space cannot be explored, even if one considers both, SI and SD, searches. |
---|---|
ISSN: | 0370-2693 1873-2445 |
DOI: | 10.1016/j.physletb.2017.06.016 |