Detecting and phasing minor single-nucleotide variants from long-read sequencing data

Cellular genetic heterogeneity is common in many biological conditions including cancer, microbiome, and co-infection of multiple pathogens. Detecting and phasing minor variants play an instrumental role in deciphering cellular genetic heterogeneity, but they are still difficult tasks because of tec...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2021-05, Vol.12 (1), p.3032-13, Article 3032
Main Authors: Feng, Zhixing, Clemente, Jose C., Wong, Brandon, Schadt, Eric E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Cellular genetic heterogeneity is common in many biological conditions including cancer, microbiome, and co-infection of multiple pathogens. Detecting and phasing minor variants play an instrumental role in deciphering cellular genetic heterogeneity, but they are still difficult tasks because of technological limitations. Recently, long-read sequencing technologies, including those by Pacific Biosciences and Oxford Nanopore, provide an opportunity to tackle these challenges. However, high error rates make it difficult to take full advantage of these technologies. To fill this gap, we introduce iGDA, an open-source tool that can accurately detect and phase minor single-nucleotide variants (SNVs), whose frequencies are as low as 0.2%, from raw long-read sequencing data. We also demonstrate that iGDA can accurately reconstruct haplotypes in closely related strains of the same species (divergence ≥0.011%) from long-read metagenomic data. Cellular genetic heterogeneity is common across biological conditions, yet application of long-read sequencing to this subject is limited by error rates. Here, the authors present iGDA, a tool for detection and phasing of minor variants from long-read sequencing data, allowing accurate reconstruction of haplotypes.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-021-23289-4