Loading…
Modeling the disruption of respiratory disease clinical trials by non-pharmaceutical COVID-19 interventions
Respiratory disease trials are profoundly affected by non-pharmaceutical interventions (NPIs) against COVID-19 because they perturb existing regular patterns of all seasonal viral epidemics. To address trial design with such uncertainty, we developed an epidemiological model of respiratory tract inf...
Saved in:
Published in: | Nature communications 2022-04, Vol.13 (1), p.1980-1980, Article 1980 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Respiratory disease trials are profoundly affected by non-pharmaceutical interventions (NPIs) against COVID-19 because they perturb existing regular patterns of all seasonal viral epidemics. To address trial design with such uncertainty, we developed an epidemiological model of respiratory tract infection (RTI) coupled to a mechanistic description of viral RTI episodes. We explored the impact of reduced viral transmission (mimicking NPIs) using a virtual population and in silico trials for the bacterial lysate OM-85 as prophylaxis for RTI. Ratio-based efficacy metrics are only impacted under strict lockdown whereas absolute benefit already is with intermediate NPIs (eg. mask-wearing). Consequently, despite NPI, trials may meet their relative efficacy endpoints (provided recruitment hurdles can be overcome) but are difficult to assess with respect to clinical relevance. These results advocate to report a variety of metrics for benefit assessment, to use adaptive trial design and adapted statistical analyses. They also question eligibility criteria misaligned with the actual disease burden.
A computational mechanistic viral infection model and trial simulation advocates for adaptation of respiratory disease clinical trials whose chances of success and interpretability are being degraded under COVID-19 pandemic mitigation measures. |
---|---|
ISSN: | 2041-1723 2041-1723 |
DOI: | 10.1038/s41467-022-29534-8 |