Loading…

Fabrication and Investigation of Deformable Rubber-Carbon Nanotube-Glue Gel-Based Impedimetric and Capacitive Tactile Sensors for Pressure and Displacement Measurements

Carbon nanotube-glue composite gel-based surface-type elastic sensors with a cylindrical shape deformable (flexible) metallic body were fabricated for tactile pressure and compressive displacement sensing. The fabrication of the sensors was performed using the rubbing-in technique. The effect of the...

Full description

Saved in:
Bibliographic Details
Published in:Gels 2024-01, Vol.10 (1), p.76
Main Authors: Karimov, Khasan S, Chani, Muhammad Tariq Saeed, Kamal, Tahseen, Zameer Abbas, Syed, Azum, Naved, Asiri, Abdullah Mohamed
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbon nanotube-glue composite gel-based surface-type elastic sensors with a cylindrical shape deformable (flexible) metallic body were fabricated for tactile pressure and compressive displacement sensing. The fabrication of the sensors was performed using the rubbing-in technique. The effect of the pressure and the compressive displacement on the capacitance and the impedance of the sensors were investigated at various frequencies (in the range of 1 kHz to 200 kHz). It was found that under the effect of pressure from 0 to 9 g/cm , the capacitance increased by 1.86 and 1.78 times, while the impedance decreased by 1.84 and 1.71 times at the frequencies of 1 kHz to 200 kHz, respectively. The effect of displacement on the impedance and the capacitance of the device was also investigated at various frequencies from 1 kHz to 200 kHz. The results showed that under the effect of compressive displacement up to 25 µm, the impedance of the sensors decreased on average by 1.19 times, while the capacitance increased by 1.09 times, accordingly. The frequency response of the displacement sensor showed that it matched with the low-pass filter. The obtained results are explained based on changes in the shape and geometrical parameters of the cylindrical-shaped conductive body. These results have also been explained on the basis of the distance between the conductive plates of the capacitive sensors during compression, which takes place under the effect of applied pressure or displacement. Moreover, the design of the sensors is simple and easy to fabricate, and their use is also earthy. The fabricated sensors have great potential for commercialization.
ISSN:2310-2861
2310-2861
DOI:10.3390/gels10010076