Loading…

Large-Scale, Multidisciplinary Laboratory Teaching of Fluid Mechanics

The nature of fluid mechanics makes experimentation an important part of a course taught on the subject. Presented here is the application of a novel, large-scale multidisciplinary model of practical education in a fluids engineering laboratory. The advantages of this approach include efficiencies t...

Full description

Saved in:
Bibliographic Details
Published in:Fluids (Basel) 2020-12, Vol.5 (4), p.206
Main Authors: Garrard, Andrew, Bangert, Krys, Beck, Stephen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The nature of fluid mechanics makes experimentation an important part of a course taught on the subject. Presented here is the application of a novel, large-scale multidisciplinary model of practical education in a fluids engineering laboratory. The advantages of this approach include efficiencies through the economy of scale leading to better pedagogy for students. The scale justifies dedicated academic resources to focus on developing laboratory classes and giving specific attention to designing activities that meet learning outcomes. Four examples of applying this approach to fluid mechanics experiments are discussed, illustrating tactics that have been developed and honed through many repeated instances of delivery. “The measurement lab” uses a flow measurement context to teach identifying and managing general experimental uncertainty. In this lab, new students, unfamiliar with fluid mechanics, are guided through a process to gain understanding that can be applied to all future experimental activities. The “pressure loss in pipes” lab discusses the advantage of and process for sharing equipment and teaching resources between multiple cohorts. Here, the provision for students is adapted for context, such as the degree program or year of study. The “weirs big and small” lab provides a methodology for teaching the power of dimensional analysis to mechanical engineers using a field of fluid mechanics that is outside their usual theoretical studies. Finally, the “spillway design” lab discusses mechanisms for delivering independent, open-ended student experiments at scale, without excessive staff resource requirements.
ISSN:2311-5521
2311-5521
DOI:10.3390/fluids5040206