Loading…
Artificial Neural Networks to Predict the Power Output of a PV Panel
The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs) for the power energy output forecasting of photovoltaic (PV) modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weat...
Saved in:
Published in: | International journal of photoenergy 2014-01, Vol.2014 (2014), p.1-12 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a595t-8cda38d4024bd44075a2566e5800ccc9cb1b6d402e28fe0bb4bb7b70597af6ce3 |
---|---|
cites | cdi_FETCH-LOGICAL-a595t-8cda38d4024bd44075a2566e5800ccc9cb1b6d402e28fe0bb4bb7b70597af6ce3 |
container_end_page | 12 |
container_issue | 2014 |
container_start_page | 1 |
container_title | International journal of photoenergy |
container_volume | 2014 |
creator | Lo Brano, Valerio Di Falco, Mariavittoria Ciulla, Giuseppina |
description | The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs) for the power energy output forecasting of photovoltaic (PV) modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy) has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP), a recursive neural network (RNN), and a gamma memory (GM) trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed) along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology. |
doi_str_mv | 10.1155/2014/193083 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_37f74830bf4140a1896ed3f2a7416fd3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_37f74830bf4140a1896ed3f2a7416fd3</doaj_id><sourcerecordid>1541464854</sourcerecordid><originalsourceid>FETCH-LOGICAL-a595t-8cda38d4024bd44075a2566e5800ccc9cb1b6d402e28fe0bb4bb7b70597af6ce3</originalsourceid><addsrcrecordid>eNqF0U1LHTEUBuBBLCjWVfcS6EaUqcnkc5biRxWk3kUr7kKSOdHY8eaaZLj035vriJRuujoheXI4L6dpvhD8jRDOTzpM2AnpKVZ0q9klQsmWd_39dj0TglshuvudZj_nYDFjkhGqxG5zfppK8MEFM6IfMKW3UtYx_c6oRLRIMARXUHkEtIhrSOh2KqupoOiRQYs7tDBLGD83n7wZM-y_173m1-XFz7Or9ub2-_XZ6U1reM9Lq9xgqBoY7pgdGMOSm44LAVxh7JzrnSVWbJ6hUx6wtcxaaSXmvTReOKB7zfXcd4jmSa9SeDbpj44m6LeLmB60qXHcCJpKL5mi2HpGGDZE9QIG6jtTgws_0NrrcO61SvFlglz0c8gOxrEGilPWhNePginOKv36D32KU1rWpFUJIgXlnFR1PCuXYs4J_MeABOvNgvRmQXpeUNVHs34My8Gsw3_wwYyhEvDmL0yF7AV9BYIulnc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1561763551</pqid></control><display><type>article</type><title>Artificial Neural Networks to Predict the Power Output of a PV Panel</title><source>Open Access: Wiley-Blackwell Open Access Journals</source><source>Publicly Available Content Database</source><creator>Lo Brano, Valerio ; Di Falco, Mariavittoria ; Ciulla, Giuseppina</creator><contributor>Worrall, David</contributor><creatorcontrib>Lo Brano, Valerio ; Di Falco, Mariavittoria ; Ciulla, Giuseppina ; Worrall, David</creatorcontrib><description>The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs) for the power energy output forecasting of photovoltaic (PV) modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy) has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP), a recursive neural network (RNN), and a gamma memory (GM) trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed) along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.</description><identifier>ISSN: 1110-662X</identifier><identifier>EISSN: 1687-529X</identifier><identifier>DOI: 10.1155/2014/193083</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Algorithms ; Climatology ; Efficiency ; Electric power generation ; Mathematical models ; Modules ; Neural networks ; Photovoltaic cells ; Solar cells ; Solar energy ; Solar power generation ; Weather</subject><ispartof>International journal of photoenergy, 2014-01, Vol.2014 (2014), p.1-12</ispartof><rights>Copyright © 2014 Valerio Lo Brano et al.</rights><rights>Copyright © 2014 Valerio Lo Brano et al. Valerio Lo Brano et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a595t-8cda38d4024bd44075a2566e5800ccc9cb1b6d402e28fe0bb4bb7b70597af6ce3</citedby><cites>FETCH-LOGICAL-a595t-8cda38d4024bd44075a2566e5800ccc9cb1b6d402e28fe0bb4bb7b70597af6ce3</cites><orcidid>0000-0001-8626-2068 ; 0000-0002-5728-0379</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1561763551/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1561763551?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Worrall, David</contributor><creatorcontrib>Lo Brano, Valerio</creatorcontrib><creatorcontrib>Di Falco, Mariavittoria</creatorcontrib><creatorcontrib>Ciulla, Giuseppina</creatorcontrib><title>Artificial Neural Networks to Predict the Power Output of a PV Panel</title><title>International journal of photoenergy</title><description>The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs) for the power energy output forecasting of photovoltaic (PV) modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy) has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP), a recursive neural network (RNN), and a gamma memory (GM) trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed) along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.</description><subject>Algorithms</subject><subject>Climatology</subject><subject>Efficiency</subject><subject>Electric power generation</subject><subject>Mathematical models</subject><subject>Modules</subject><subject>Neural networks</subject><subject>Photovoltaic cells</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Solar power generation</subject><subject>Weather</subject><issn>1110-662X</issn><issn>1687-529X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqF0U1LHTEUBuBBLCjWVfcS6EaUqcnkc5biRxWk3kUr7kKSOdHY8eaaZLj035vriJRuujoheXI4L6dpvhD8jRDOTzpM2AnpKVZ0q9klQsmWd_39dj0TglshuvudZj_nYDFjkhGqxG5zfppK8MEFM6IfMKW3UtYx_c6oRLRIMARXUHkEtIhrSOh2KqupoOiRQYs7tDBLGD83n7wZM-y_173m1-XFz7Or9ub2-_XZ6U1reM9Lq9xgqBoY7pgdGMOSm44LAVxh7JzrnSVWbJ6hUx6wtcxaaSXmvTReOKB7zfXcd4jmSa9SeDbpj44m6LeLmB60qXHcCJpKL5mi2HpGGDZE9QIG6jtTgws_0NrrcO61SvFlglz0c8gOxrEGilPWhNePginOKv36D32KU1rWpFUJIgXlnFR1PCuXYs4J_MeABOvNgvRmQXpeUNVHs34My8Gsw3_wwYyhEvDmL0yF7AV9BYIulnc</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Lo Brano, Valerio</creator><creator>Di Falco, Mariavittoria</creator><creator>Ciulla, Giuseppina</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7SC</scope><scope>JQ2</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8626-2068</orcidid><orcidid>https://orcid.org/0000-0002-5728-0379</orcidid></search><sort><creationdate>20140101</creationdate><title>Artificial Neural Networks to Predict the Power Output of a PV Panel</title><author>Lo Brano, Valerio ; Di Falco, Mariavittoria ; Ciulla, Giuseppina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a595t-8cda38d4024bd44075a2566e5800ccc9cb1b6d402e28fe0bb4bb7b70597af6ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Climatology</topic><topic>Efficiency</topic><topic>Electric power generation</topic><topic>Mathematical models</topic><topic>Modules</topic><topic>Neural networks</topic><topic>Photovoltaic cells</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Solar power generation</topic><topic>Weather</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lo Brano, Valerio</creatorcontrib><creatorcontrib>Di Falco, Mariavittoria</creatorcontrib><creatorcontrib>Ciulla, Giuseppina</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>https://resources.nclive.org/materials</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals</collection><jtitle>International journal of photoenergy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lo Brano, Valerio</au><au>Di Falco, Mariavittoria</au><au>Ciulla, Giuseppina</au><au>Worrall, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Neural Networks to Predict the Power Output of a PV Panel</atitle><jtitle>International journal of photoenergy</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>2014</volume><issue>2014</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1110-662X</issn><eissn>1687-529X</eissn><abstract>The paper illustrates an adaptive approach based on different topologies of artificial neural networks (ANNs) for the power energy output forecasting of photovoltaic (PV) modules. The analysis of the PV module’s power output needed detailed local climate data, which was collected by a dedicated weather monitoring system. The Department of Energy, Information Engineering, and Mathematical Models of the University of Palermo (Italy) has built up a weather monitoring system that worked together with a data acquisition system. The power output forecast is obtained using three different types of ANNs: a one hidden layer Multilayer perceptron (MLP), a recursive neural network (RNN), and a gamma memory (GM) trained with the back propagation. In order to investigate the influence of climate variability on the electricity production, the ANNs were trained using weather data (air temperature, solar irradiance, and wind speed) along with historical power output data available for the two test modules. The model validation was performed by comparing model predictions with power output data that were not used for the network's training. The results obtained bear out the suitability of the adopted methodology for the short-term power output forecasting problem and identified the best topology.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2014/193083</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8626-2068</orcidid><orcidid>https://orcid.org/0000-0002-5728-0379</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1110-662X |
ispartof | International journal of photoenergy, 2014-01, Vol.2014 (2014), p.1-12 |
issn | 1110-662X 1687-529X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_37f74830bf4140a1896ed3f2a7416fd3 |
source | Open Access: Wiley-Blackwell Open Access Journals; Publicly Available Content Database |
subjects | Algorithms Climatology Efficiency Electric power generation Mathematical models Modules Neural networks Photovoltaic cells Solar cells Solar energy Solar power generation Weather |
title | Artificial Neural Networks to Predict the Power Output of a PV Panel |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A34%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Neural%20Networks%20to%20Predict%20the%20Power%20Output%20of%20a%20PV%20Panel&rft.jtitle=International%20journal%20of%20photoenergy&rft.au=Lo%20Brano,%20Valerio&rft.date=2014-01-01&rft.volume=2014&rft.issue=2014&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1110-662X&rft.eissn=1687-529X&rft_id=info:doi/10.1155/2014/193083&rft_dat=%3Cproquest_doaj_%3E1541464854%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a595t-8cda38d4024bd44075a2566e5800ccc9cb1b6d402e28fe0bb4bb7b70597af6ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1561763551&rft_id=info:pmid/&rfr_iscdi=true |