Loading…
Analytical study on couple stress flow of GO-EG and GO-W nanofluid over an extending cylinder along with variable viscosity
The main goal of this research is to present the concept of enhancing heat transfer within emerging technology. To achieve this, tiny metal and nonmetal particles ranging from 1 to 100 nm in size are introduced into base liquids. These nanoscale particles are utilized to improve the thermal performa...
Saved in:
Published in: | Heliyon 2023-12, Vol.9 (12), p.e22491-e22491, Article e22491 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c534t-cd458a429b1af03f1d2ba1a510db2cf47d21e3331750e298d73fdd99b94281f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c534t-cd458a429b1af03f1d2ba1a510db2cf47d21e3331750e298d73fdd99b94281f3 |
container_end_page | e22491 |
container_issue | 12 |
container_start_page | e22491 |
container_title | Heliyon |
container_volume | 9 |
creator | Rehman, Ali Khun, Ma Chau Salleh, Zabidin Khan, Waris Albely, Maryam Sulaiman Jan, Rashid Alhabeeb, Somayah Abdualziz |
description | The main goal of this research is to present the concept of enhancing heat transfer within emerging technology. To achieve this, tiny metal and nonmetal particles ranging from 1 to 100 nm in size are introduced into base liquids. These nanoscale particles are utilized to improve the thermal performance of the liquids, leading to what are termed nanofluids. The utilization of these fluids and the examination of the flow of thin films have valuable implications across various sectors such as engineering, technology, and industries. This research focuses on analyzing the convective flow behavior of nanofluids, specifically, graphene oxide-ethylene glycol (GO−EG) and graphene oxide-water (GO−W) on a moving surface. The study investigates the impacts of magnetic fields and varying viscosity. By making use of the thermophysical characteristics of the base fluid and the nanofluid, as well as implementing a similarity transformation within the fundamental equations that govern energy and momentum, we formulate a 5th order nonlinear ordinary differential equation (NODE) to describe the velocity profile. This is combined with a second-order NODE that describes the distribution of temperature. To solve this derived NODE, we employ a method known as the Homotopy Analysis Method (HAM) for analytical solution. The impact of the relevant factors, Prandtl number, including magnetic field parameter, thickness of the liquid, couple stress parameter, temperature distribution, dynamic viscosity, and Eckert number, on the skin friction, velocity profile, and Nusselt's number are interrogated through graphical representation. The velocity field exhibits a decline as the couple stress parameter, magnetic field parameter, liquid thickness, and dynamic viscosity experience an increase. Conversely, the temperature field displays a rise as the Eckert number and dynamic viscosity experience an increase. To ensure the convergence of the issue, dual solutions of the problem are employed, and this is verified through the utilization graphs and tables. Due to the considerable challenge encountered in heat transfer applications for cooling diverse equipment and devices across industries like automotive, microelectronics, defense, and manufacturing, there is a strong expectation that this theoretical methodology could make a favorable contribution towards enhancing heat transfer efficiency. This improvement is sought to meet the requirements of the manufacturing and engineering sectors. |
doi_str_mv | 10.1016/j.heliyon.2023.e22491 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_381eacf8b37142cba6573dd479511108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844023096998</els_id><doaj_id>oai_doaj_org_article_381eacf8b37142cba6573dd479511108</doaj_id><sourcerecordid>2902944243</sourcerecordid><originalsourceid>FETCH-LOGICAL-c534t-cd458a429b1af03f1d2ba1a510db2cf47d21e3331750e298d73fdd99b94281f3</originalsourceid><addsrcrecordid>eNqFkk1vGyEQhldVqyZK8xNacezFLl_7wamKotSNFCmXSD0iFgYbC4MLu5uu8ueLazdNTj0xMwzPwMtbVR8JXhJMmi_b5Qa8m2NYUkzZEijlgrypzinH9aLjHL99EZ9VlzlvMcak7hrRsvfVGetw25CGnVdPV0H5eXBaeZSH0cwoBqTjuPdQ8gQ5I-vjI4oWre4XNyukgjlEP1BQIVo_OoPiBKnUEfwaIBgX1kjP3gVzqPpY0kc3bNCkklN9wU4u65jdMH-o3lnlM1ye1ovq4dvNw_X3xd396vb66m6ha8aHhTa87hSnoifKYmaJob0iqibY9FRb3hpKgDFG2hoDFZ1pmTVGiF5w2hHLLqrbI9ZEtZX75HYqzTIqJ_8UYlpLlYoCHiTrCChtu561hFPdq6ZumTG8FTUhBHeF9fXI2o_9DoyGMCTlX0Ff7wS3kes4SYJbLAq1ED6fCCn-HCEPclf0AO9VgDhmSQWmgnPKWWmtj606xZwT2Oc5BMuDD-RWnnwgDz6QRx-Uc59eXvL51N9f__cKKKpPDpLM2kHQYFwCPRRd3H9G_AYno8hr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2902944243</pqid></control><display><type>article</type><title>Analytical study on couple stress flow of GO-EG and GO-W nanofluid over an extending cylinder along with variable viscosity</title><source>ScienceDirect - Connect here FIRST to enable access</source><source>PubMed Central</source><creator>Rehman, Ali ; Khun, Ma Chau ; Salleh, Zabidin ; Khan, Waris ; Albely, Maryam Sulaiman ; Jan, Rashid ; Alhabeeb, Somayah Abdualziz</creator><creatorcontrib>Rehman, Ali ; Khun, Ma Chau ; Salleh, Zabidin ; Khan, Waris ; Albely, Maryam Sulaiman ; Jan, Rashid ; Alhabeeb, Somayah Abdualziz</creatorcontrib><description>The main goal of this research is to present the concept of enhancing heat transfer within emerging technology. To achieve this, tiny metal and nonmetal particles ranging from 1 to 100 nm in size are introduced into base liquids. These nanoscale particles are utilized to improve the thermal performance of the liquids, leading to what are termed nanofluids. The utilization of these fluids and the examination of the flow of thin films have valuable implications across various sectors such as engineering, technology, and industries. This research focuses on analyzing the convective flow behavior of nanofluids, specifically, graphene oxide-ethylene glycol (GO−EG) and graphene oxide-water (GO−W) on a moving surface. The study investigates the impacts of magnetic fields and varying viscosity. By making use of the thermophysical characteristics of the base fluid and the nanofluid, as well as implementing a similarity transformation within the fundamental equations that govern energy and momentum, we formulate a 5th order nonlinear ordinary differential equation (NODE) to describe the velocity profile. This is combined with a second-order NODE that describes the distribution of temperature. To solve this derived NODE, we employ a method known as the Homotopy Analysis Method (HAM) for analytical solution. The impact of the relevant factors, Prandtl number, including magnetic field parameter, thickness of the liquid, couple stress parameter, temperature distribution, dynamic viscosity, and Eckert number, on the skin friction, velocity profile, and Nusselt's number are interrogated through graphical representation. The velocity field exhibits a decline as the couple stress parameter, magnetic field parameter, liquid thickness, and dynamic viscosity experience an increase. Conversely, the temperature field displays a rise as the Eckert number and dynamic viscosity experience an increase. To ensure the convergence of the issue, dual solutions of the problem are employed, and this is verified through the utilization graphs and tables. Due to the considerable challenge encountered in heat transfer applications for cooling diverse equipment and devices across industries like automotive, microelectronics, defense, and manufacturing, there is a strong expectation that this theoretical methodology could make a favorable contribution towards enhancing heat transfer efficiency. This improvement is sought to meet the requirements of the manufacturing and engineering sectors.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2023.e22491</identifier><identifier>PMID: 38076163</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Couple stress parameter ; GO-EG ; GO-W ; HAM BVP2.0 package ; Nanofluidics ; Nanomaterial ; Stretching cylinder</subject><ispartof>Heliyon, 2023-12, Vol.9 (12), p.e22491-e22491, Article e22491</ispartof><rights>2023</rights><rights>2023 The Authors. Published by Elsevier Ltd.</rights><rights>2023 The Authors. Published by Elsevier Ltd. 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c534t-cd458a429b1af03f1d2ba1a510db2cf47d21e3331750e298d73fdd99b94281f3</citedby><cites>FETCH-LOGICAL-c534t-cd458a429b1af03f1d2ba1a510db2cf47d21e3331750e298d73fdd99b94281f3</cites><orcidid>0000-0002-4286-5403 ; 0000-0001-5877-9051</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC10709371/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844023096998$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,3549,27924,27925,45780,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38076163$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rehman, Ali</creatorcontrib><creatorcontrib>Khun, Ma Chau</creatorcontrib><creatorcontrib>Salleh, Zabidin</creatorcontrib><creatorcontrib>Khan, Waris</creatorcontrib><creatorcontrib>Albely, Maryam Sulaiman</creatorcontrib><creatorcontrib>Jan, Rashid</creatorcontrib><creatorcontrib>Alhabeeb, Somayah Abdualziz</creatorcontrib><title>Analytical study on couple stress flow of GO-EG and GO-W nanofluid over an extending cylinder along with variable viscosity</title><title>Heliyon</title><addtitle>Heliyon</addtitle><description>The main goal of this research is to present the concept of enhancing heat transfer within emerging technology. To achieve this, tiny metal and nonmetal particles ranging from 1 to 100 nm in size are introduced into base liquids. These nanoscale particles are utilized to improve the thermal performance of the liquids, leading to what are termed nanofluids. The utilization of these fluids and the examination of the flow of thin films have valuable implications across various sectors such as engineering, technology, and industries. This research focuses on analyzing the convective flow behavior of nanofluids, specifically, graphene oxide-ethylene glycol (GO−EG) and graphene oxide-water (GO−W) on a moving surface. The study investigates the impacts of magnetic fields and varying viscosity. By making use of the thermophysical characteristics of the base fluid and the nanofluid, as well as implementing a similarity transformation within the fundamental equations that govern energy and momentum, we formulate a 5th order nonlinear ordinary differential equation (NODE) to describe the velocity profile. This is combined with a second-order NODE that describes the distribution of temperature. To solve this derived NODE, we employ a method known as the Homotopy Analysis Method (HAM) for analytical solution. The impact of the relevant factors, Prandtl number, including magnetic field parameter, thickness of the liquid, couple stress parameter, temperature distribution, dynamic viscosity, and Eckert number, on the skin friction, velocity profile, and Nusselt's number are interrogated through graphical representation. The velocity field exhibits a decline as the couple stress parameter, magnetic field parameter, liquid thickness, and dynamic viscosity experience an increase. Conversely, the temperature field displays a rise as the Eckert number and dynamic viscosity experience an increase. To ensure the convergence of the issue, dual solutions of the problem are employed, and this is verified through the utilization graphs and tables. Due to the considerable challenge encountered in heat transfer applications for cooling diverse equipment and devices across industries like automotive, microelectronics, defense, and manufacturing, there is a strong expectation that this theoretical methodology could make a favorable contribution towards enhancing heat transfer efficiency. This improvement is sought to meet the requirements of the manufacturing and engineering sectors.</description><subject>Couple stress parameter</subject><subject>GO-EG</subject><subject>GO-W</subject><subject>HAM BVP2.0 package</subject><subject>Nanofluidics</subject><subject>Nanomaterial</subject><subject>Stretching cylinder</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkk1vGyEQhldVqyZK8xNacezFLl_7wamKotSNFCmXSD0iFgYbC4MLu5uu8ueLazdNTj0xMwzPwMtbVR8JXhJMmi_b5Qa8m2NYUkzZEijlgrypzinH9aLjHL99EZ9VlzlvMcak7hrRsvfVGetw25CGnVdPV0H5eXBaeZSH0cwoBqTjuPdQ8gQ5I-vjI4oWre4XNyukgjlEP1BQIVo_OoPiBKnUEfwaIBgX1kjP3gVzqPpY0kc3bNCkklN9wU4u65jdMH-o3lnlM1ye1ovq4dvNw_X3xd396vb66m6ha8aHhTa87hSnoifKYmaJob0iqibY9FRb3hpKgDFG2hoDFZ1pmTVGiF5w2hHLLqrbI9ZEtZX75HYqzTIqJ_8UYlpLlYoCHiTrCChtu561hFPdq6ZumTG8FTUhBHeF9fXI2o_9DoyGMCTlX0Ff7wS3kes4SYJbLAq1ED6fCCn-HCEPclf0AO9VgDhmSQWmgnPKWWmtj606xZwT2Oc5BMuDD-RWnnwgDz6QRx-Uc59eXvL51N9f__cKKKpPDpLM2kHQYFwCPRRd3H9G_AYno8hr</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Rehman, Ali</creator><creator>Khun, Ma Chau</creator><creator>Salleh, Zabidin</creator><creator>Khan, Waris</creator><creator>Albely, Maryam Sulaiman</creator><creator>Jan, Rashid</creator><creator>Alhabeeb, Somayah Abdualziz</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4286-5403</orcidid><orcidid>https://orcid.org/0000-0001-5877-9051</orcidid></search><sort><creationdate>20231201</creationdate><title>Analytical study on couple stress flow of GO-EG and GO-W nanofluid over an extending cylinder along with variable viscosity</title><author>Rehman, Ali ; Khun, Ma Chau ; Salleh, Zabidin ; Khan, Waris ; Albely, Maryam Sulaiman ; Jan, Rashid ; Alhabeeb, Somayah Abdualziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c534t-cd458a429b1af03f1d2ba1a510db2cf47d21e3331750e298d73fdd99b94281f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Couple stress parameter</topic><topic>GO-EG</topic><topic>GO-W</topic><topic>HAM BVP2.0 package</topic><topic>Nanofluidics</topic><topic>Nanomaterial</topic><topic>Stretching cylinder</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rehman, Ali</creatorcontrib><creatorcontrib>Khun, Ma Chau</creatorcontrib><creatorcontrib>Salleh, Zabidin</creatorcontrib><creatorcontrib>Khan, Waris</creatorcontrib><creatorcontrib>Albely, Maryam Sulaiman</creatorcontrib><creatorcontrib>Jan, Rashid</creatorcontrib><creatorcontrib>Alhabeeb, Somayah Abdualziz</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rehman, Ali</au><au>Khun, Ma Chau</au><au>Salleh, Zabidin</au><au>Khan, Waris</au><au>Albely, Maryam Sulaiman</au><au>Jan, Rashid</au><au>Alhabeeb, Somayah Abdualziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analytical study on couple stress flow of GO-EG and GO-W nanofluid over an extending cylinder along with variable viscosity</atitle><jtitle>Heliyon</jtitle><addtitle>Heliyon</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>9</volume><issue>12</issue><spage>e22491</spage><epage>e22491</epage><pages>e22491-e22491</pages><artnum>e22491</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>The main goal of this research is to present the concept of enhancing heat transfer within emerging technology. To achieve this, tiny metal and nonmetal particles ranging from 1 to 100 nm in size are introduced into base liquids. These nanoscale particles are utilized to improve the thermal performance of the liquids, leading to what are termed nanofluids. The utilization of these fluids and the examination of the flow of thin films have valuable implications across various sectors such as engineering, technology, and industries. This research focuses on analyzing the convective flow behavior of nanofluids, specifically, graphene oxide-ethylene glycol (GO−EG) and graphene oxide-water (GO−W) on a moving surface. The study investigates the impacts of magnetic fields and varying viscosity. By making use of the thermophysical characteristics of the base fluid and the nanofluid, as well as implementing a similarity transformation within the fundamental equations that govern energy and momentum, we formulate a 5th order nonlinear ordinary differential equation (NODE) to describe the velocity profile. This is combined with a second-order NODE that describes the distribution of temperature. To solve this derived NODE, we employ a method known as the Homotopy Analysis Method (HAM) for analytical solution. The impact of the relevant factors, Prandtl number, including magnetic field parameter, thickness of the liquid, couple stress parameter, temperature distribution, dynamic viscosity, and Eckert number, on the skin friction, velocity profile, and Nusselt's number are interrogated through graphical representation. The velocity field exhibits a decline as the couple stress parameter, magnetic field parameter, liquid thickness, and dynamic viscosity experience an increase. Conversely, the temperature field displays a rise as the Eckert number and dynamic viscosity experience an increase. To ensure the convergence of the issue, dual solutions of the problem are employed, and this is verified through the utilization graphs and tables. Due to the considerable challenge encountered in heat transfer applications for cooling diverse equipment and devices across industries like automotive, microelectronics, defense, and manufacturing, there is a strong expectation that this theoretical methodology could make a favorable contribution towards enhancing heat transfer efficiency. This improvement is sought to meet the requirements of the manufacturing and engineering sectors.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38076163</pmid><doi>10.1016/j.heliyon.2023.e22491</doi><orcidid>https://orcid.org/0000-0002-4286-5403</orcidid><orcidid>https://orcid.org/0000-0001-5877-9051</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2405-8440 |
ispartof | Heliyon, 2023-12, Vol.9 (12), p.e22491-e22491, Article e22491 |
issn | 2405-8440 2405-8440 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_381eacf8b37142cba6573dd479511108 |
source | ScienceDirect - Connect here FIRST to enable access; PubMed Central |
subjects | Couple stress parameter GO-EG GO-W HAM BVP2.0 package Nanofluidics Nanomaterial Stretching cylinder |
title | Analytical study on couple stress flow of GO-EG and GO-W nanofluid over an extending cylinder along with variable viscosity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T23%3A35%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analytical%20study%20on%20couple%20stress%20flow%20of%20GO-EG%20and%20GO-W%20nanofluid%20over%20an%20extending%20cylinder%20along%20with%20variable%20viscosity&rft.jtitle=Heliyon&rft.au=Rehman,%20Ali&rft.date=2023-12-01&rft.volume=9&rft.issue=12&rft.spage=e22491&rft.epage=e22491&rft.pages=e22491-e22491&rft.artnum=e22491&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2023.e22491&rft_dat=%3Cproquest_doaj_%3E2902944243%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c534t-cd458a429b1af03f1d2ba1a510db2cf47d21e3331750e298d73fdd99b94281f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2902944243&rft_id=info:pmid/38076163&rfr_iscdi=true |