Loading…
AI-driven optimization of agricultural water management for enhanced sustainability
Optimizing agricultural water resource management is crucial for food production, as effective water management can significantly improve irrigation efficiency and crop yields. Currently, precise agricultural water demand forecasting and management have become key research focuses; however, existing...
Saved in:
Published in: | Scientific reports 2024-10, Vol.14 (1), p.25721-14, Article 25721 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-84c1055a48ae54e1600ad64977a7123400a53acce3c0f63f3570b283e2f81b523 |
container_end_page | 14 |
container_issue | 1 |
container_start_page | 25721 |
container_title | Scientific reports |
container_volume | 14 |
creator | Ye, Zhigang Yin, Shan Cao, Yin Wang, Yong |
description | Optimizing agricultural water resource management is crucial for food production, as effective water management can significantly improve irrigation efficiency and crop yields. Currently, precise agricultural water demand forecasting and management have become key research focuses; however, existing methods often fail to capture complex spatial and temporal dependencies. To address this, we propose a novel deep learning framework that combines remote sensing technology with the UNet-ConvLSTM (UCL) model to effectively integrate spatial and temporal features from MODIS and GLDAS datasets. Our model leverages the high-resolution spatial data from UNet and the temporal dependencies captured by ConvLSTM to significantly improve prediction accuracy. Experimental results demonstrate that our UCL model achieves the best
R
2
compared to existing methods, reaching 0.927 on the MODIS dataset and 0.935 on the GLDAS dataset. This approach highlights the potential of AI and remote sensing technologies in addressing critical challenges in agricultural water management, contributing to more sustainable and efficient food production systems. |
doi_str_mv | 10.1038/s41598-024-76915-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_382102e19b3446eaa6dc1f0b71623a2b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_382102e19b3446eaa6dc1f0b71623a2b</doaj_id><sourcerecordid>3121470087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-84c1055a48ae54e1600ad64977a7123400a53acce3c0f63f3570b283e2f81b523</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEolXpC3BAkbhwCdhjO3FOqKpoWakSB-BsTZzJ1qvEXuykqDw97qaUlgO-2OP557PH_oviNWfvORP6Q5JctbpiIKumbrmq9LPiGJhUFQiA54_WR8VpSjuWh4JW8vZlcSRaWWuQ8rj4erap-uhuyJdhP7vJ_cLZhRwMJW6js8s4LxHH8ifOFMsJPW5pIj-XQ4gl-Wv0lvoyLWlG57Fzo5tvXxUvBhwTnd7PJ8X3i0_fzj9XV18uN-dnV5WVAHOlpeVMKZQaSUniNWPY17JtGmw4CJlDJdBaEpYNtRiEalgHWhAMmncKxEmxWbl9wJ3ZRzdhvDUBnTlshLg1GGdnRzJCA2dAvO2ElDUh1r3lA-saXoNA6DLr48raL91Evc0t5rafQJ9mvLs223BjOFe8Va3IhHf3hBh-LJRmM7lkaRzRU1iSERzyj0Gt7qRv_5HuwhJ9fquDSjaM6SarYFXZGFKKNDzchjNz5wGzesBkD5iDB4zORW8e9_FQ8ufHs0CsgpRTfkvx79n_wf4G33y8HQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121470087</pqid></control><display><type>article</type><title>AI-driven optimization of agricultural water management for enhanced sustainability</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ye, Zhigang ; Yin, Shan ; Cao, Yin ; Wang, Yong</creator><creatorcontrib>Ye, Zhigang ; Yin, Shan ; Cao, Yin ; Wang, Yong</creatorcontrib><description>Optimizing agricultural water resource management is crucial for food production, as effective water management can significantly improve irrigation efficiency and crop yields. Currently, precise agricultural water demand forecasting and management have become key research focuses; however, existing methods often fail to capture complex spatial and temporal dependencies. To address this, we propose a novel deep learning framework that combines remote sensing technology with the UNet-ConvLSTM (UCL) model to effectively integrate spatial and temporal features from MODIS and GLDAS datasets. Our model leverages the high-resolution spatial data from UNet and the temporal dependencies captured by ConvLSTM to significantly improve prediction accuracy. Experimental results demonstrate that our UCL model achieves the best
R
2
compared to existing methods, reaching 0.927 on the MODIS dataset and 0.935 on the GLDAS dataset. This approach highlights the potential of AI and remote sensing technologies in addressing critical challenges in agricultural water management, contributing to more sustainable and efficient food production systems.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-76915-8</identifier><identifier>PMID: 39468244</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/117 ; 639/705/258 ; 704/172 ; Agricultural management ; Agricultural resources ; Agricultural water management ; Crop yield ; Deep learning ; Food production ; Food security ; Humanities and Social Sciences ; Irrigation efficiency ; multidisciplinary ; Precision agriculture ; Remote sensing ; Resource management ; Science ; Science (multidisciplinary) ; Spatial discrimination learning ; Temporal variations ; UNet-ConvLSTM ; Water demand ; Water management ; Water resources management</subject><ispartof>Scientific reports, 2024-10, Vol.14 (1), p.25721-14, Article 25721</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-84c1055a48ae54e1600ad64977a7123400a53acce3c0f63f3570b283e2f81b523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3121470087/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3121470087?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39468244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Zhigang</creatorcontrib><creatorcontrib>Yin, Shan</creatorcontrib><creatorcontrib>Cao, Yin</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><title>AI-driven optimization of agricultural water management for enhanced sustainability</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Optimizing agricultural water resource management is crucial for food production, as effective water management can significantly improve irrigation efficiency and crop yields. Currently, precise agricultural water demand forecasting and management have become key research focuses; however, existing methods often fail to capture complex spatial and temporal dependencies. To address this, we propose a novel deep learning framework that combines remote sensing technology with the UNet-ConvLSTM (UCL) model to effectively integrate spatial and temporal features from MODIS and GLDAS datasets. Our model leverages the high-resolution spatial data from UNet and the temporal dependencies captured by ConvLSTM to significantly improve prediction accuracy. Experimental results demonstrate that our UCL model achieves the best
R
2
compared to existing methods, reaching 0.927 on the MODIS dataset and 0.935 on the GLDAS dataset. This approach highlights the potential of AI and remote sensing technologies in addressing critical challenges in agricultural water management, contributing to more sustainable and efficient food production systems.</description><subject>639/705/117</subject><subject>639/705/258</subject><subject>704/172</subject><subject>Agricultural management</subject><subject>Agricultural resources</subject><subject>Agricultural water management</subject><subject>Crop yield</subject><subject>Deep learning</subject><subject>Food production</subject><subject>Food security</subject><subject>Humanities and Social Sciences</subject><subject>Irrigation efficiency</subject><subject>multidisciplinary</subject><subject>Precision agriculture</subject><subject>Remote sensing</subject><subject>Resource management</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial discrimination learning</subject><subject>Temporal variations</subject><subject>UNet-ConvLSTM</subject><subject>Water demand</subject><subject>Water management</subject><subject>Water resources management</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFu1DAQhiMEolXpC3BAkbhwCdhjO3FOqKpoWakSB-BsTZzJ1qvEXuykqDw97qaUlgO-2OP557PH_oviNWfvORP6Q5JctbpiIKumbrmq9LPiGJhUFQiA54_WR8VpSjuWh4JW8vZlcSRaWWuQ8rj4erap-uhuyJdhP7vJ_cLZhRwMJW6js8s4LxHH8ifOFMsJPW5pIj-XQ4gl-Wv0lvoyLWlG57Fzo5tvXxUvBhwTnd7PJ8X3i0_fzj9XV18uN-dnV5WVAHOlpeVMKZQaSUniNWPY17JtGmw4CJlDJdBaEpYNtRiEalgHWhAMmncKxEmxWbl9wJ3ZRzdhvDUBnTlshLg1GGdnRzJCA2dAvO2ElDUh1r3lA-saXoNA6DLr48raL91Evc0t5rafQJ9mvLs223BjOFe8Va3IhHf3hBh-LJRmM7lkaRzRU1iSERzyj0Gt7qRv_5HuwhJ9fquDSjaM6SarYFXZGFKKNDzchjNz5wGzesBkD5iDB4zORW8e9_FQ8ufHs0CsgpRTfkvx79n_wf4G33y8HQ</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Ye, Zhigang</creator><creator>Yin, Shan</creator><creator>Cao, Yin</creator><creator>Wang, Yong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241028</creationdate><title>AI-driven optimization of agricultural water management for enhanced sustainability</title><author>Ye, Zhigang ; Yin, Shan ; Cao, Yin ; Wang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-84c1055a48ae54e1600ad64977a7123400a53acce3c0f63f3570b283e2f81b523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/705/117</topic><topic>639/705/258</topic><topic>704/172</topic><topic>Agricultural management</topic><topic>Agricultural resources</topic><topic>Agricultural water management</topic><topic>Crop yield</topic><topic>Deep learning</topic><topic>Food production</topic><topic>Food security</topic><topic>Humanities and Social Sciences</topic><topic>Irrigation efficiency</topic><topic>multidisciplinary</topic><topic>Precision agriculture</topic><topic>Remote sensing</topic><topic>Resource management</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial discrimination learning</topic><topic>Temporal variations</topic><topic>UNet-ConvLSTM</topic><topic>Water demand</topic><topic>Water management</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Zhigang</creatorcontrib><creatorcontrib>Yin, Shan</creatorcontrib><creatorcontrib>Cao, Yin</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Zhigang</au><au>Yin, Shan</au><au>Cao, Yin</au><au>Wang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-driven optimization of agricultural water management for enhanced sustainability</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-10-28</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>25721</spage><epage>14</epage><pages>25721-14</pages><artnum>25721</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Optimizing agricultural water resource management is crucial for food production, as effective water management can significantly improve irrigation efficiency and crop yields. Currently, precise agricultural water demand forecasting and management have become key research focuses; however, existing methods often fail to capture complex spatial and temporal dependencies. To address this, we propose a novel deep learning framework that combines remote sensing technology with the UNet-ConvLSTM (UCL) model to effectively integrate spatial and temporal features from MODIS and GLDAS datasets. Our model leverages the high-resolution spatial data from UNet and the temporal dependencies captured by ConvLSTM to significantly improve prediction accuracy. Experimental results demonstrate that our UCL model achieves the best
R
2
compared to existing methods, reaching 0.927 on the MODIS dataset and 0.935 on the GLDAS dataset. This approach highlights the potential of AI and remote sensing technologies in addressing critical challenges in agricultural water management, contributing to more sustainable and efficient food production systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39468244</pmid><doi>10.1038/s41598-024-76915-8</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-10, Vol.14 (1), p.25721-14, Article 25721 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_382102e19b3446eaa6dc1f0b71623a2b |
source | Access via ProQuest (Open Access); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705/117 639/705/258 704/172 Agricultural management Agricultural resources Agricultural water management Crop yield Deep learning Food production Food security Humanities and Social Sciences Irrigation efficiency multidisciplinary Precision agriculture Remote sensing Resource management Science Science (multidisciplinary) Spatial discrimination learning Temporal variations UNet-ConvLSTM Water demand Water management Water resources management |
title | AI-driven optimization of agricultural water management for enhanced sustainability |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-driven%20optimization%20of%20agricultural%20water%20management%20for%20enhanced%20sustainability&rft.jtitle=Scientific%20reports&rft.au=Ye,%20Zhigang&rft.date=2024-10-28&rft.volume=14&rft.issue=1&rft.spage=25721&rft.epage=14&rft.pages=25721-14&rft.artnum=25721&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-76915-8&rft_dat=%3Cproquest_doaj_%3E3121470087%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-84c1055a48ae54e1600ad64977a7123400a53acce3c0f63f3570b283e2f81b523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3121470087&rft_id=info:pmid/39468244&rfr_iscdi=true |