Loading…

AI-driven optimization of agricultural water management for enhanced sustainability

Optimizing agricultural water resource management is crucial for food production, as effective water management can significantly improve irrigation efficiency and crop yields. Currently, precise agricultural water demand forecasting and management have become key research focuses; however, existing...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-10, Vol.14 (1), p.25721-14, Article 25721
Main Authors: Ye, Zhigang, Yin, Shan, Cao, Yin, Wang, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c422t-84c1055a48ae54e1600ad64977a7123400a53acce3c0f63f3570b283e2f81b523
container_end_page 14
container_issue 1
container_start_page 25721
container_title Scientific reports
container_volume 14
creator Ye, Zhigang
Yin, Shan
Cao, Yin
Wang, Yong
description Optimizing agricultural water resource management is crucial for food production, as effective water management can significantly improve irrigation efficiency and crop yields. Currently, precise agricultural water demand forecasting and management have become key research focuses; however, existing methods often fail to capture complex spatial and temporal dependencies. To address this, we propose a novel deep learning framework that combines remote sensing technology with the UNet-ConvLSTM (UCL) model to effectively integrate spatial and temporal features from MODIS and GLDAS datasets. Our model leverages the high-resolution spatial data from UNet and the temporal dependencies captured by ConvLSTM to significantly improve prediction accuracy. Experimental results demonstrate that our UCL model achieves the best R 2 compared to existing methods, reaching 0.927 on the MODIS dataset and 0.935 on the GLDAS dataset. This approach highlights the potential of AI and remote sensing technologies in addressing critical challenges in agricultural water management, contributing to more sustainable and efficient food production systems.
doi_str_mv 10.1038/s41598-024-76915-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_382102e19b3446eaa6dc1f0b71623a2b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_382102e19b3446eaa6dc1f0b71623a2b</doaj_id><sourcerecordid>3121470087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-84c1055a48ae54e1600ad64977a7123400a53acce3c0f63f3570b283e2f81b523</originalsourceid><addsrcrecordid>eNp9ksFu1DAQhiMEolXpC3BAkbhwCdhjO3FOqKpoWakSB-BsTZzJ1qvEXuykqDw97qaUlgO-2OP557PH_oviNWfvORP6Q5JctbpiIKumbrmq9LPiGJhUFQiA54_WR8VpSjuWh4JW8vZlcSRaWWuQ8rj4erap-uhuyJdhP7vJ_cLZhRwMJW6js8s4LxHH8ifOFMsJPW5pIj-XQ4gl-Wv0lvoyLWlG57Fzo5tvXxUvBhwTnd7PJ8X3i0_fzj9XV18uN-dnV5WVAHOlpeVMKZQaSUniNWPY17JtGmw4CJlDJdBaEpYNtRiEalgHWhAMmncKxEmxWbl9wJ3ZRzdhvDUBnTlshLg1GGdnRzJCA2dAvO2ElDUh1r3lA-saXoNA6DLr48raL91Evc0t5rafQJ9mvLs223BjOFe8Va3IhHf3hBh-LJRmM7lkaRzRU1iSERzyj0Gt7qRv_5HuwhJ9fquDSjaM6SarYFXZGFKKNDzchjNz5wGzesBkD5iDB4zORW8e9_FQ8ufHs0CsgpRTfkvx79n_wf4G33y8HQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3121470087</pqid></control><display><type>article</type><title>AI-driven optimization of agricultural water management for enhanced sustainability</title><source>Access via ProQuest (Open Access)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Ye, Zhigang ; Yin, Shan ; Cao, Yin ; Wang, Yong</creator><creatorcontrib>Ye, Zhigang ; Yin, Shan ; Cao, Yin ; Wang, Yong</creatorcontrib><description>Optimizing agricultural water resource management is crucial for food production, as effective water management can significantly improve irrigation efficiency and crop yields. Currently, precise agricultural water demand forecasting and management have become key research focuses; however, existing methods often fail to capture complex spatial and temporal dependencies. To address this, we propose a novel deep learning framework that combines remote sensing technology with the UNet-ConvLSTM (UCL) model to effectively integrate spatial and temporal features from MODIS and GLDAS datasets. Our model leverages the high-resolution spatial data from UNet and the temporal dependencies captured by ConvLSTM to significantly improve prediction accuracy. Experimental results demonstrate that our UCL model achieves the best R 2 compared to existing methods, reaching 0.927 on the MODIS dataset and 0.935 on the GLDAS dataset. This approach highlights the potential of AI and remote sensing technologies in addressing critical challenges in agricultural water management, contributing to more sustainable and efficient food production systems.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-76915-8</identifier><identifier>PMID: 39468244</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/117 ; 639/705/258 ; 704/172 ; Agricultural management ; Agricultural resources ; Agricultural water management ; Crop yield ; Deep learning ; Food production ; Food security ; Humanities and Social Sciences ; Irrigation efficiency ; multidisciplinary ; Precision agriculture ; Remote sensing ; Resource management ; Science ; Science (multidisciplinary) ; Spatial discrimination learning ; Temporal variations ; UNet-ConvLSTM ; Water demand ; Water management ; Water resources management</subject><ispartof>Scientific reports, 2024-10, Vol.14 (1), p.25721-14, Article 25721</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-84c1055a48ae54e1600ad64977a7123400a53acce3c0f63f3570b283e2f81b523</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3121470087/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3121470087?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39468244$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ye, Zhigang</creatorcontrib><creatorcontrib>Yin, Shan</creatorcontrib><creatorcontrib>Cao, Yin</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><title>AI-driven optimization of agricultural water management for enhanced sustainability</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Optimizing agricultural water resource management is crucial for food production, as effective water management can significantly improve irrigation efficiency and crop yields. Currently, precise agricultural water demand forecasting and management have become key research focuses; however, existing methods often fail to capture complex spatial and temporal dependencies. To address this, we propose a novel deep learning framework that combines remote sensing technology with the UNet-ConvLSTM (UCL) model to effectively integrate spatial and temporal features from MODIS and GLDAS datasets. Our model leverages the high-resolution spatial data from UNet and the temporal dependencies captured by ConvLSTM to significantly improve prediction accuracy. Experimental results demonstrate that our UCL model achieves the best R 2 compared to existing methods, reaching 0.927 on the MODIS dataset and 0.935 on the GLDAS dataset. This approach highlights the potential of AI and remote sensing technologies in addressing critical challenges in agricultural water management, contributing to more sustainable and efficient food production systems.</description><subject>639/705/117</subject><subject>639/705/258</subject><subject>704/172</subject><subject>Agricultural management</subject><subject>Agricultural resources</subject><subject>Agricultural water management</subject><subject>Crop yield</subject><subject>Deep learning</subject><subject>Food production</subject><subject>Food security</subject><subject>Humanities and Social Sciences</subject><subject>Irrigation efficiency</subject><subject>multidisciplinary</subject><subject>Precision agriculture</subject><subject>Remote sensing</subject><subject>Resource management</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Spatial discrimination learning</subject><subject>Temporal variations</subject><subject>UNet-ConvLSTM</subject><subject>Water demand</subject><subject>Water management</subject><subject>Water resources management</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ksFu1DAQhiMEolXpC3BAkbhwCdhjO3FOqKpoWakSB-BsTZzJ1qvEXuykqDw97qaUlgO-2OP557PH_oviNWfvORP6Q5JctbpiIKumbrmq9LPiGJhUFQiA54_WR8VpSjuWh4JW8vZlcSRaWWuQ8rj4erap-uhuyJdhP7vJ_cLZhRwMJW6js8s4LxHH8ifOFMsJPW5pIj-XQ4gl-Wv0lvoyLWlG57Fzo5tvXxUvBhwTnd7PJ8X3i0_fzj9XV18uN-dnV5WVAHOlpeVMKZQaSUniNWPY17JtGmw4CJlDJdBaEpYNtRiEalgHWhAMmncKxEmxWbl9wJ3ZRzdhvDUBnTlshLg1GGdnRzJCA2dAvO2ElDUh1r3lA-saXoNA6DLr48raL91Evc0t5rafQJ9mvLs223BjOFe8Va3IhHf3hBh-LJRmM7lkaRzRU1iSERzyj0Gt7qRv_5HuwhJ9fquDSjaM6SarYFXZGFKKNDzchjNz5wGzesBkD5iDB4zORW8e9_FQ8ufHs0CsgpRTfkvx79n_wf4G33y8HQ</recordid><startdate>20241028</startdate><enddate>20241028</enddate><creator>Ye, Zhigang</creator><creator>Yin, Shan</creator><creator>Cao, Yin</creator><creator>Wang, Yong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241028</creationdate><title>AI-driven optimization of agricultural water management for enhanced sustainability</title><author>Ye, Zhigang ; Yin, Shan ; Cao, Yin ; Wang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-84c1055a48ae54e1600ad64977a7123400a53acce3c0f63f3570b283e2f81b523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/705/117</topic><topic>639/705/258</topic><topic>704/172</topic><topic>Agricultural management</topic><topic>Agricultural resources</topic><topic>Agricultural water management</topic><topic>Crop yield</topic><topic>Deep learning</topic><topic>Food production</topic><topic>Food security</topic><topic>Humanities and Social Sciences</topic><topic>Irrigation efficiency</topic><topic>multidisciplinary</topic><topic>Precision agriculture</topic><topic>Remote sensing</topic><topic>Resource management</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Spatial discrimination learning</topic><topic>Temporal variations</topic><topic>UNet-ConvLSTM</topic><topic>Water demand</topic><topic>Water management</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ye, Zhigang</creatorcontrib><creatorcontrib>Yin, Shan</creatorcontrib><creatorcontrib>Cao, Yin</creatorcontrib><creatorcontrib>Wang, Yong</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ye, Zhigang</au><au>Yin, Shan</au><au>Cao, Yin</au><au>Wang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AI-driven optimization of agricultural water management for enhanced sustainability</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-10-28</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>25721</spage><epage>14</epage><pages>25721-14</pages><artnum>25721</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Optimizing agricultural water resource management is crucial for food production, as effective water management can significantly improve irrigation efficiency and crop yields. Currently, precise agricultural water demand forecasting and management have become key research focuses; however, existing methods often fail to capture complex spatial and temporal dependencies. To address this, we propose a novel deep learning framework that combines remote sensing technology with the UNet-ConvLSTM (UCL) model to effectively integrate spatial and temporal features from MODIS and GLDAS datasets. Our model leverages the high-resolution spatial data from UNet and the temporal dependencies captured by ConvLSTM to significantly improve prediction accuracy. Experimental results demonstrate that our UCL model achieves the best R 2 compared to existing methods, reaching 0.927 on the MODIS dataset and 0.935 on the GLDAS dataset. This approach highlights the potential of AI and remote sensing technologies in addressing critical challenges in agricultural water management, contributing to more sustainable and efficient food production systems.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>39468244</pmid><doi>10.1038/s41598-024-76915-8</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-10, Vol.14 (1), p.25721-14, Article 25721
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_382102e19b3446eaa6dc1f0b71623a2b
source Access via ProQuest (Open Access); PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/705/117
639/705/258
704/172
Agricultural management
Agricultural resources
Agricultural water management
Crop yield
Deep learning
Food production
Food security
Humanities and Social Sciences
Irrigation efficiency
multidisciplinary
Precision agriculture
Remote sensing
Resource management
Science
Science (multidisciplinary)
Spatial discrimination learning
Temporal variations
UNet-ConvLSTM
Water demand
Water management
Water resources management
title AI-driven optimization of agricultural water management for enhanced sustainability
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AI-driven%20optimization%20of%20agricultural%20water%20management%20for%20enhanced%20sustainability&rft.jtitle=Scientific%20reports&rft.au=Ye,%20Zhigang&rft.date=2024-10-28&rft.volume=14&rft.issue=1&rft.spage=25721&rft.epage=14&rft.pages=25721-14&rft.artnum=25721&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-76915-8&rft_dat=%3Cproquest_doaj_%3E3121470087%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-84c1055a48ae54e1600ad64977a7123400a53acce3c0f63f3570b283e2f81b523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3121470087&rft_id=info:pmid/39468244&rfr_iscdi=true