Loading…

El Niño Modoki can be mostly predicted more than 10 years ahead of time

The 2014–2015 “Monster”/“Super” El Niño failed to be predicted one year earlier due to the growing importance of a new type of El Niño, El Niño Modoki, which reportedly has much lower forecast skill with the classical models. In this study, we show that, so far as of today, this new El Niño actually...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2021-09, Vol.11 (1), p.17860-17860, Article 17860
Main Authors: Liang, X. San, Xu, Fen, Rong, Yineng, Zhang, Renhe, Tang, Xu, Zhang, Feng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113
cites cdi_FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113
container_end_page 17860
container_issue 1
container_start_page 17860
container_title Scientific reports
container_volume 11
creator Liang, X. San
Xu, Fen
Rong, Yineng
Zhang, Renhe
Tang, Xu
Zhang, Feng
description The 2014–2015 “Monster”/“Super” El Niño failed to be predicted one year earlier due to the growing importance of a new type of El Niño, El Niño Modoki, which reportedly has much lower forecast skill with the classical models. In this study, we show that, so far as of today, this new El Niño actually can be mostly predicted at a lead time of more than 10 years. This is achieved through tracing the predictability source with an information flow-based causality analysis, which has been rigorously established from first principles during the past 16 years (e.g., Liang in Phys Rev E 94:052201, 2016). We show that the information flowing from the solar activity 45 years ago to the sea surface temperature results in a causal structure resembling the El Niño Modoki mode. Based on this, a multidimensional system is constructed out of the sunspot number series with time delays of 22–50 years. The first 25 principal components are then taken as the predictors to fulfill the prediction, which through causal AI based on the Liang–Kleeman information flow reproduces rather accurately the events thus far 12 years in advance.
doi_str_mv 10.1038/s41598-021-97111-y
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_382a56d14b4c4b7c8a28b5c15e4757f1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_382a56d14b4c4b7c8a28b5c15e4757f1</doaj_id><sourcerecordid>2571926298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EolXpC7CyxIZN6L2OndgbJFQVWqnABtaW45-ZDEk82BmkPBbPwIvV01RAWeCNrevzHVn-CHmJ8AahlheZo1CyAoaVahGxWp6QUwZcVKxm7Olf5xNynvMOyhJMcVTPyUnNBZQ8npLrq4F-6n_9jPRjdPFbT62ZaOfpGPM8LHSfvOvt7F0ZJE_nbblFoIs3KVOz9cbRGOjcj_4FeRbMkP35w35Gvr6_-nJ5Xd1-_nBz-e62sgLbuXKWq4ZxExwqKPGWi-AUtD40wQEEGTi3tVFdA8BqUOA65pQD7oxCiVifkZvV66LZ6X3qR5MWHU2v7wcxbbRJc28Hr2vJjGgc8o5b3rVWGiY7YVF43oo2HF1vV9f-0I3eWT_NyQyPpI9vpn6rN_GHlpwp0cgieP0gSPH7wedZj322fhjM5OMhayZaVKxh6oi--gfdxUOaylcdKWgalCAKxVbKpphz8uH3YxD0sXe99q5L7_q-d72UUL2GcoGnjU9_1P9J3QF7RK3X</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570661805</pqid></control><display><type>article</type><title>El Niño Modoki can be mostly predicted more than 10 years ahead of time</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Liang, X. San ; Xu, Fen ; Rong, Yineng ; Zhang, Renhe ; Tang, Xu ; Zhang, Feng</creator><creatorcontrib>Liang, X. San ; Xu, Fen ; Rong, Yineng ; Zhang, Renhe ; Tang, Xu ; Zhang, Feng</creatorcontrib><description>The 2014–2015 “Monster”/“Super” El Niño failed to be predicted one year earlier due to the growing importance of a new type of El Niño, El Niño Modoki, which reportedly has much lower forecast skill with the classical models. In this study, we show that, so far as of today, this new El Niño actually can be mostly predicted at a lead time of more than 10 years. This is achieved through tracing the predictability source with an information flow-based causality analysis, which has been rigorously established from first principles during the past 16 years (e.g., Liang in Phys Rev E 94:052201, 2016). We show that the information flowing from the solar activity 45 years ago to the sea surface temperature results in a causal structure resembling the El Niño Modoki mode. Based on this, a multidimensional system is constructed out of the sunspot number series with time delays of 22–50 years. The first 25 principal components are then taken as the predictors to fulfill the prediction, which through causal AI based on the Liang–Kleeman information flow reproduces rather accurately the events thus far 12 years in advance.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-97111-y</identifier><identifier>PMID: 34504151</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106 ; 704/106/829/2737 ; 704/525/870 ; Atmosphere ; Climate science ; Data science ; El Nino ; Humanities and Social Sciences ; multidisciplinary ; Parameter estimation ; Rain ; Science ; Science (multidisciplinary) ; Sea surface temperature ; Solar activity ; Timing</subject><ispartof>Scientific reports, 2021-09, Vol.11 (1), p.17860-17860, Article 17860</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113</citedby><cites>FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2570661805/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2570661805?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Liang, X. San</creatorcontrib><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Rong, Yineng</creatorcontrib><creatorcontrib>Zhang, Renhe</creatorcontrib><creatorcontrib>Tang, Xu</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><title>El Niño Modoki can be mostly predicted more than 10 years ahead of time</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>The 2014–2015 “Monster”/“Super” El Niño failed to be predicted one year earlier due to the growing importance of a new type of El Niño, El Niño Modoki, which reportedly has much lower forecast skill with the classical models. In this study, we show that, so far as of today, this new El Niño actually can be mostly predicted at a lead time of more than 10 years. This is achieved through tracing the predictability source with an information flow-based causality analysis, which has been rigorously established from first principles during the past 16 years (e.g., Liang in Phys Rev E 94:052201, 2016). We show that the information flowing from the solar activity 45 years ago to the sea surface temperature results in a causal structure resembling the El Niño Modoki mode. Based on this, a multidimensional system is constructed out of the sunspot number series with time delays of 22–50 years. The first 25 principal components are then taken as the predictors to fulfill the prediction, which through causal AI based on the Liang–Kleeman information flow reproduces rather accurately the events thus far 12 years in advance.</description><subject>704/106</subject><subject>704/106/829/2737</subject><subject>704/525/870</subject><subject>Atmosphere</subject><subject>Climate science</subject><subject>Data science</subject><subject>El Nino</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Parameter estimation</subject><subject>Rain</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sea surface temperature</subject><subject>Solar activity</subject><subject>Timing</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1DAURi0EolXpC7CyxIZN6L2OndgbJFQVWqnABtaW45-ZDEk82BmkPBbPwIvV01RAWeCNrevzHVn-CHmJ8AahlheZo1CyAoaVahGxWp6QUwZcVKxm7Olf5xNynvMOyhJMcVTPyUnNBZQ8npLrq4F-6n_9jPRjdPFbT62ZaOfpGPM8LHSfvOvt7F0ZJE_nbblFoIs3KVOz9cbRGOjcj_4FeRbMkP35w35Gvr6_-nJ5Xd1-_nBz-e62sgLbuXKWq4ZxExwqKPGWi-AUtD40wQEEGTi3tVFdA8BqUOA65pQD7oxCiVifkZvV66LZ6X3qR5MWHU2v7wcxbbRJc28Hr2vJjGgc8o5b3rVWGiY7YVF43oo2HF1vV9f-0I3eWT_NyQyPpI9vpn6rN_GHlpwp0cgieP0gSPH7wedZj322fhjM5OMhayZaVKxh6oi--gfdxUOaylcdKWgalCAKxVbKpphz8uH3YxD0sXe99q5L7_q-d72UUL2GcoGnjU9_1P9J3QF7RK3X</recordid><startdate>20210909</startdate><enddate>20210909</enddate><creator>Liang, X. San</creator><creator>Xu, Fen</creator><creator>Rong, Yineng</creator><creator>Zhang, Renhe</creator><creator>Tang, Xu</creator><creator>Zhang, Feng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210909</creationdate><title>El Niño Modoki can be mostly predicted more than 10 years ahead of time</title><author>Liang, X. San ; Xu, Fen ; Rong, Yineng ; Zhang, Renhe ; Tang, Xu ; Zhang, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/106</topic><topic>704/106/829/2737</topic><topic>704/525/870</topic><topic>Atmosphere</topic><topic>Climate science</topic><topic>Data science</topic><topic>El Nino</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Parameter estimation</topic><topic>Rain</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sea surface temperature</topic><topic>Solar activity</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, X. San</creatorcontrib><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Rong, Yineng</creatorcontrib><creatorcontrib>Zhang, Renhe</creatorcontrib><creatorcontrib>Tang, Xu</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, X. San</au><au>Xu, Fen</au><au>Rong, Yineng</au><au>Zhang, Renhe</au><au>Tang, Xu</au><au>Zhang, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>El Niño Modoki can be mostly predicted more than 10 years ahead of time</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2021-09-09</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>17860</spage><epage>17860</epage><pages>17860-17860</pages><artnum>17860</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The 2014–2015 “Monster”/“Super” El Niño failed to be predicted one year earlier due to the growing importance of a new type of El Niño, El Niño Modoki, which reportedly has much lower forecast skill with the classical models. In this study, we show that, so far as of today, this new El Niño actually can be mostly predicted at a lead time of more than 10 years. This is achieved through tracing the predictability source with an information flow-based causality analysis, which has been rigorously established from first principles during the past 16 years (e.g., Liang in Phys Rev E 94:052201, 2016). We show that the information flowing from the solar activity 45 years ago to the sea surface temperature results in a causal structure resembling the El Niño Modoki mode. Based on this, a multidimensional system is constructed out of the sunspot number series with time delays of 22–50 years. The first 25 principal components are then taken as the predictors to fulfill the prediction, which through causal AI based on the Liang–Kleeman information flow reproduces rather accurately the events thus far 12 years in advance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34504151</pmid><doi>10.1038/s41598-021-97111-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2021-09, Vol.11 (1), p.17860-17860, Article 17860
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_382a56d14b4c4b7c8a28b5c15e4757f1
source Open Access: PubMed Central; Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access
subjects 704/106
704/106/829/2737
704/525/870
Atmosphere
Climate science
Data science
El Nino
Humanities and Social Sciences
multidisciplinary
Parameter estimation
Rain
Science
Science (multidisciplinary)
Sea surface temperature
Solar activity
Timing
title El Niño Modoki can be mostly predicted more than 10 years ahead of time
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=El%20Ni%C3%B1o%20Modoki%20can%20be%20mostly%20predicted%20more%20than%2010%20years%20ahead%20of%20time&rft.jtitle=Scientific%20reports&rft.au=Liang,%20X.%20San&rft.date=2021-09-09&rft.volume=11&rft.issue=1&rft.spage=17860&rft.epage=17860&rft.pages=17860-17860&rft.artnum=17860&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-97111-y&rft_dat=%3Cproquest_doaj_%3E2571926298%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570661805&rft_id=info:pmid/34504151&rfr_iscdi=true