Loading…
El Niño Modoki can be mostly predicted more than 10 years ahead of time
The 2014–2015 “Monster”/“Super” El Niño failed to be predicted one year earlier due to the growing importance of a new type of El Niño, El Niño Modoki, which reportedly has much lower forecast skill with the classical models. In this study, we show that, so far as of today, this new El Niño actually...
Saved in:
Published in: | Scientific reports 2021-09, Vol.11 (1), p.17860-17860, Article 17860 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113 |
container_end_page | 17860 |
container_issue | 1 |
container_start_page | 17860 |
container_title | Scientific reports |
container_volume | 11 |
creator | Liang, X. San Xu, Fen Rong, Yineng Zhang, Renhe Tang, Xu Zhang, Feng |
description | The 2014–2015 “Monster”/“Super” El Niño failed to be predicted one year earlier due to the growing importance of a new type of El Niño, El Niño Modoki, which reportedly has much lower forecast skill with the classical models. In this study, we show that, so far as of today, this new El Niño actually can be mostly predicted at a lead time of more than 10 years. This is achieved through tracing the predictability source with an information flow-based causality analysis, which has been rigorously established from first principles during the past 16 years (e.g., Liang in Phys Rev E 94:052201, 2016). We show that the information flowing from the solar activity 45 years ago to the sea surface temperature results in a causal structure resembling the El Niño Modoki mode. Based on this, a multidimensional system is constructed out of the sunspot number series with time delays of 22–50 years. The first 25 principal components are then taken as the predictors to fulfill the prediction, which through causal AI based on the Liang–Kleeman information flow reproduces rather accurately the events thus far 12 years in advance. |
doi_str_mv | 10.1038/s41598-021-97111-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_382a56d14b4c4b7c8a28b5c15e4757f1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_382a56d14b4c4b7c8a28b5c15e4757f1</doaj_id><sourcerecordid>2571926298</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EolXpC7CyxIZN6L2OndgbJFQVWqnABtaW45-ZDEk82BmkPBbPwIvV01RAWeCNrevzHVn-CHmJ8AahlheZo1CyAoaVahGxWp6QUwZcVKxm7Olf5xNynvMOyhJMcVTPyUnNBZQ8npLrq4F-6n_9jPRjdPFbT62ZaOfpGPM8LHSfvOvt7F0ZJE_nbblFoIs3KVOz9cbRGOjcj_4FeRbMkP35w35Gvr6_-nJ5Xd1-_nBz-e62sgLbuXKWq4ZxExwqKPGWi-AUtD40wQEEGTi3tVFdA8BqUOA65pQD7oxCiVifkZvV66LZ6X3qR5MWHU2v7wcxbbRJc28Hr2vJjGgc8o5b3rVWGiY7YVF43oo2HF1vV9f-0I3eWT_NyQyPpI9vpn6rN_GHlpwp0cgieP0gSPH7wedZj322fhjM5OMhayZaVKxh6oi--gfdxUOaylcdKWgalCAKxVbKpphz8uH3YxD0sXe99q5L7_q-d72UUL2GcoGnjU9_1P9J3QF7RK3X</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2570661805</pqid></control><display><type>article</type><title>El Niño Modoki can be mostly predicted more than 10 years ahead of time</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Full-Text Journals in Chemistry (Open access)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Liang, X. San ; Xu, Fen ; Rong, Yineng ; Zhang, Renhe ; Tang, Xu ; Zhang, Feng</creator><creatorcontrib>Liang, X. San ; Xu, Fen ; Rong, Yineng ; Zhang, Renhe ; Tang, Xu ; Zhang, Feng</creatorcontrib><description>The 2014–2015 “Monster”/“Super” El Niño failed to be predicted one year earlier due to the growing importance of a new type of El Niño, El Niño Modoki, which reportedly has much lower forecast skill with the classical models. In this study, we show that, so far as of today, this new El Niño actually can be mostly predicted at a lead time of more than 10 years. This is achieved through tracing the predictability source with an information flow-based causality analysis, which has been rigorously established from first principles during the past 16 years (e.g., Liang in Phys Rev E 94:052201, 2016). We show that the information flowing from the solar activity 45 years ago to the sea surface temperature results in a causal structure resembling the El Niño Modoki mode. Based on this, a multidimensional system is constructed out of the sunspot number series with time delays of 22–50 years. The first 25 principal components are then taken as the predictors to fulfill the prediction, which through causal AI based on the Liang–Kleeman information flow reproduces rather accurately the events thus far 12 years in advance.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-021-97111-y</identifier><identifier>PMID: 34504151</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106 ; 704/106/829/2737 ; 704/525/870 ; Atmosphere ; Climate science ; Data science ; El Nino ; Humanities and Social Sciences ; multidisciplinary ; Parameter estimation ; Rain ; Science ; Science (multidisciplinary) ; Sea surface temperature ; Solar activity ; Timing</subject><ispartof>Scientific reports, 2021-09, Vol.11 (1), p.17860-17860, Article 17860</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113</citedby><cites>FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2570661805/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2570661805?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids></links><search><creatorcontrib>Liang, X. San</creatorcontrib><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Rong, Yineng</creatorcontrib><creatorcontrib>Zhang, Renhe</creatorcontrib><creatorcontrib>Tang, Xu</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><title>El Niño Modoki can be mostly predicted more than 10 years ahead of time</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><description>The 2014–2015 “Monster”/“Super” El Niño failed to be predicted one year earlier due to the growing importance of a new type of El Niño, El Niño Modoki, which reportedly has much lower forecast skill with the classical models. In this study, we show that, so far as of today, this new El Niño actually can be mostly predicted at a lead time of more than 10 years. This is achieved through tracing the predictability source with an information flow-based causality analysis, which has been rigorously established from first principles during the past 16 years (e.g., Liang in Phys Rev E 94:052201, 2016). We show that the information flowing from the solar activity 45 years ago to the sea surface temperature results in a causal structure resembling the El Niño Modoki mode. Based on this, a multidimensional system is constructed out of the sunspot number series with time delays of 22–50 years. The first 25 principal components are then taken as the predictors to fulfill the prediction, which through causal AI based on the Liang–Kleeman information flow reproduces rather accurately the events thus far 12 years in advance.</description><subject>704/106</subject><subject>704/106/829/2737</subject><subject>704/525/870</subject><subject>Atmosphere</subject><subject>Climate science</subject><subject>Data science</subject><subject>El Nino</subject><subject>Humanities and Social Sciences</subject><subject>multidisciplinary</subject><subject>Parameter estimation</subject><subject>Rain</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Sea surface temperature</subject><subject>Solar activity</subject><subject>Timing</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kc1u1DAURi0EolXpC7CyxIZN6L2OndgbJFQVWqnABtaW45-ZDEk82BmkPBbPwIvV01RAWeCNrevzHVn-CHmJ8AahlheZo1CyAoaVahGxWp6QUwZcVKxm7Olf5xNynvMOyhJMcVTPyUnNBZQ8npLrq4F-6n_9jPRjdPFbT62ZaOfpGPM8LHSfvOvt7F0ZJE_nbblFoIs3KVOz9cbRGOjcj_4FeRbMkP35w35Gvr6_-nJ5Xd1-_nBz-e62sgLbuXKWq4ZxExwqKPGWi-AUtD40wQEEGTi3tVFdA8BqUOA65pQD7oxCiVifkZvV66LZ6X3qR5MWHU2v7wcxbbRJc28Hr2vJjGgc8o5b3rVWGiY7YVF43oo2HF1vV9f-0I3eWT_NyQyPpI9vpn6rN_GHlpwp0cgieP0gSPH7wedZj322fhjM5OMhayZaVKxh6oi--gfdxUOaylcdKWgalCAKxVbKpphz8uH3YxD0sXe99q5L7_q-d72UUL2GcoGnjU9_1P9J3QF7RK3X</recordid><startdate>20210909</startdate><enddate>20210909</enddate><creator>Liang, X. San</creator><creator>Xu, Fen</creator><creator>Rong, Yineng</creator><creator>Zhang, Renhe</creator><creator>Tang, Xu</creator><creator>Zhang, Feng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20210909</creationdate><title>El Niño Modoki can be mostly predicted more than 10 years ahead of time</title><author>Liang, X. San ; Xu, Fen ; Rong, Yineng ; Zhang, Renhe ; Tang, Xu ; Zhang, Feng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>704/106</topic><topic>704/106/829/2737</topic><topic>704/525/870</topic><topic>Atmosphere</topic><topic>Climate science</topic><topic>Data science</topic><topic>El Nino</topic><topic>Humanities and Social Sciences</topic><topic>multidisciplinary</topic><topic>Parameter estimation</topic><topic>Rain</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Sea surface temperature</topic><topic>Solar activity</topic><topic>Timing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, X. San</creatorcontrib><creatorcontrib>Xu, Fen</creatorcontrib><creatorcontrib>Rong, Yineng</creatorcontrib><creatorcontrib>Zhang, Renhe</creatorcontrib><creatorcontrib>Tang, Xu</creatorcontrib><creatorcontrib>Zhang, Feng</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, X. San</au><au>Xu, Fen</au><au>Rong, Yineng</au><au>Zhang, Renhe</au><au>Tang, Xu</au><au>Zhang, Feng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>El Niño Modoki can be mostly predicted more than 10 years ahead of time</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><date>2021-09-09</date><risdate>2021</risdate><volume>11</volume><issue>1</issue><spage>17860</spage><epage>17860</epage><pages>17860-17860</pages><artnum>17860</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>The 2014–2015 “Monster”/“Super” El Niño failed to be predicted one year earlier due to the growing importance of a new type of El Niño, El Niño Modoki, which reportedly has much lower forecast skill with the classical models. In this study, we show that, so far as of today, this new El Niño actually can be mostly predicted at a lead time of more than 10 years. This is achieved through tracing the predictability source with an information flow-based causality analysis, which has been rigorously established from first principles during the past 16 years (e.g., Liang in Phys Rev E 94:052201, 2016). We show that the information flowing from the solar activity 45 years ago to the sea surface temperature results in a causal structure resembling the El Niño Modoki mode. Based on this, a multidimensional system is constructed out of the sunspot number series with time delays of 22–50 years. The first 25 principal components are then taken as the predictors to fulfill the prediction, which through causal AI based on the Liang–Kleeman information flow reproduces rather accurately the events thus far 12 years in advance.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34504151</pmid><doi>10.1038/s41598-021-97111-y</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2021-09, Vol.11 (1), p.17860-17860, Article 17860 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_382a56d14b4c4b7c8a28b5c15e4757f1 |
source | Open Access: PubMed Central; Publicly Available Content Database; Full-Text Journals in Chemistry (Open access); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 704/106 704/106/829/2737 704/525/870 Atmosphere Climate science Data science El Nino Humanities and Social Sciences multidisciplinary Parameter estimation Rain Science Science (multidisciplinary) Sea surface temperature Solar activity Timing |
title | El Niño Modoki can be mostly predicted more than 10 years ahead of time |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A28%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=El%20Ni%C3%B1o%20Modoki%20can%20be%20mostly%20predicted%20more%20than%2010%20years%20ahead%20of%20time&rft.jtitle=Scientific%20reports&rft.au=Liang,%20X.%20San&rft.date=2021-09-09&rft.volume=11&rft.issue=1&rft.spage=17860&rft.epage=17860&rft.pages=17860-17860&rft.artnum=17860&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-021-97111-y&rft_dat=%3Cproquest_doaj_%3E2571926298%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-dc49624afd190ead745fd907ef6fd00f8f44c3a9b60023090db2d9d04da918113%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2570661805&rft_id=info:pmid/34504151&rfr_iscdi=true |