Loading…
An Efficient Iterative Approach for Hermitian Matrices Having a Fourth-Order Convergence Rate to Find the Geometric Mean
The target of this work is to present a multiplication-based iterative method for two Hermitian positive definite matrices to find the geometric mean. The method is constructed via the application of the matrix sign function. It is theoretically investigated that it has fourth order of convergence....
Saved in:
Published in: | Mathematics (Basel) 2024-06, Vol.12 (11), p.1772 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The target of this work is to present a multiplication-based iterative method for two Hermitian positive definite matrices to find the geometric mean. The method is constructed via the application of the matrix sign function. It is theoretically investigated that it has fourth order of convergence. The type of convergence is also discussed, which is global under an appropriate choice of the initial matrix. Numerical experiments are reported based on input matrices of different sizes as well as various stopping termination levels with comparisons to methods of the same nature and same number of matrix–matrix multiplications. The simulation results confirm the efficiency of the proposed scheme in contrast to its competitors of the same nature. |
---|---|
ISSN: | 2227-7390 2227-7390 |
DOI: | 10.3390/math12111772 |