Loading…
Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting
The ability to split an incident light beam into separate wavelength bands is central to a diverse set of optical applications, including imaging, biosensing, communication, photocatalysis, and photovoltaics. Entirely new opportunities are currently emerging with the recently demonstrated possibilit...
Saved in:
Published in: | Nature communications 2018-01, Vol.9 (1), p.316-7, Article 316 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c633t-601d9fbfa4a8703b175ab1f0611d486d1e0a29438b378a416768b7164aaa7d793 |
---|---|
cites | cdi_FETCH-LOGICAL-c633t-601d9fbfa4a8703b175ab1f0611d486d1e0a29438b378a416768b7164aaa7d793 |
container_end_page | 7 |
container_issue | 1 |
container_start_page | 316 |
container_title | Nature communications |
container_volume | 9 |
creator | Kim, Soo Jin Kang, Ju-Hyung Mutlu, Mehmet Park, Joonsuk Park, Woosung Goodson, Kenneth E. Sinclair, Robert Fan, Shanhui Kik, Pieter G. Brongersma, Mark L. |
description | The ability to split an incident light beam into separate wavelength bands is central to a diverse set of optical applications, including imaging, biosensing, communication, photocatalysis, and photovoltaics. Entirely new opportunities are currently emerging with the recently demonstrated possibility to spectrally split light at a subwavelength scale with optical antennas. Unfortunately, such small structures offer limited spectral control and are hard to exploit in optoelectronic devices. Here, we overcome both challenges and demonstrate how within a single-layer metafilm one can laterally sort photons of different wavelengths below the free-space diffraction limit and extract a useful photocurrent. This chipscale demonstration of anti-Hermitian coupling between resonant photodetector elements also facilitates near-unity photon-sorting efficiencies, near-unity absorption, and a narrow spectral response (∼ 30 nm) for the different wavelength channels. This work opens up entirely new design paradigms for image sensors and energy harvesting systems in which the active elements both sort and detect photons.
Subwavelength photon sorting in photodetection systems with a narrow spectral bandwidth has remained elusive. The authors spectrally sort and detect photons by suppressing the near-field interaction and maximizing the far-field interactions between photodetector elements, achieving a spectral separation of 30 nm. |
doi_str_mv | 10.1038/s41467-017-02496-y |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3855cc3a0aec466d9e4418d0eb719343</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3855cc3a0aec466d9e4418d0eb719343</doaj_id><sourcerecordid>1990489029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-601d9fbfa4a8703b175ab1f0611d486d1e0a29438b378a416768b7164aaa7d793</originalsourceid><addsrcrecordid>eNp1kk1rFTEUhoMottT-ARcy6MbN1GSSycdGKEVtoaALXYczmczcXOYm1yRTuf_eTKctt4KBkJC85zkfvAi9JfiCYCo_JUYYFzUmZTdM8frwAp02mJGaiIa-PLqfoPOUtrgsqohk7DU6aRRtJW_4Kfpx6bOrr23cuezAV_tNyKG32ZocYjWAcZPLkJ0fKzsMzjjrc5Xm7g_c2cn6MW_WEF-lEBfZG_RqgCnZ84fzDP36-uXn1XV9-_3bzdXlbW04pbnmmPRq6AZgIAWmHREtdGTAnJCeSd4Ti6FRjMqOCgmMcMFlJwhnACB6oegZulm5fYCt3ke3g3jQAZy-fwhx1FAKMpPVVLatMRQwWMM475VljMge2wJUlNHC-ryy9nO3s70pPUaYnkGf_3i30WO4060QEvMF8H4FhJSdTsaV-W1M8L6MURNWGlS8iD4-ZInh92xT1juXjJ0m8DbMSROlMJMKN0tzH_6RbsMcfZlnUcmia5hYgM2qMjGkFO3wVDHBejGJXk2ii0n0vUn0oQS9O-71KeTREkVAV0EqX3608Sj3_7F_AV8HyCM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989902476</pqid></control><display><type>article</type><title>Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kim, Soo Jin ; Kang, Ju-Hyung ; Mutlu, Mehmet ; Park, Joonsuk ; Park, Woosung ; Goodson, Kenneth E. ; Sinclair, Robert ; Fan, Shanhui ; Kik, Pieter G. ; Brongersma, Mark L.</creator><creatorcontrib>Kim, Soo Jin ; Kang, Ju-Hyung ; Mutlu, Mehmet ; Park, Joonsuk ; Park, Woosung ; Goodson, Kenneth E. ; Sinclair, Robert ; Fan, Shanhui ; Kik, Pieter G. ; Brongersma, Mark L. ; Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI) ; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><description>The ability to split an incident light beam into separate wavelength bands is central to a diverse set of optical applications, including imaging, biosensing, communication, photocatalysis, and photovoltaics. Entirely new opportunities are currently emerging with the recently demonstrated possibility to spectrally split light at a subwavelength scale with optical antennas. Unfortunately, such small structures offer limited spectral control and are hard to exploit in optoelectronic devices. Here, we overcome both challenges and demonstrate how within a single-layer metafilm one can laterally sort photons of different wavelengths below the free-space diffraction limit and extract a useful photocurrent. This chipscale demonstration of anti-Hermitian coupling between resonant photodetector elements also facilitates near-unity photon-sorting efficiencies, near-unity absorption, and a narrow spectral response (∼ 30 nm) for the different wavelength channels. This work opens up entirely new design paradigms for image sensors and energy harvesting systems in which the active elements both sort and detect photons.
Subwavelength photon sorting in photodetection systems with a narrow spectral bandwidth has remained elusive. The authors spectrally sort and detect photons by suppressing the near-field interaction and maximizing the far-field interactions between photodetector elements, achieving a spectral separation of 30 nm.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-017-02496-y</identifier><identifier>PMID: 29358626</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/624/399/1015 ; 639/766/1130/2799 ; 639/925/927/1021 ; Biosensors ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY ; Electric fields ; Electrical engineering ; electrodes - solar ; Energy harvesting ; ENGINEERING ; Humanities and Social Sciences ; Incident light ; Light ; materials and chemistry by design ; MATERIALS SCIENCE ; Microscopy ; multidisciplinary ; optics ; Optoelectronic devices ; phonons ; Photoelectric effect ; Photoelectric emission ; Photometers ; Photons ; Photovoltaic cells ; Photovoltaics ; Science ; Science (multidisciplinary) ; solar (photovoltaic) ; Solar cells ; solid state lighting ; Spectra ; Spectral control ; Spectral sensitivity ; Spectrum analysis ; synthesis (novel materials) ; synthesis (self-assembly) ; thermal conductivity ; Unity ; Wavelength ; Wavelengths</subject><ispartof>Nature communications, 2018-01, Vol.9 (1), p.316-7, Article 316</ispartof><rights>The Author(s) 2018</rights><rights>2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-601d9fbfa4a8703b175ab1f0611d486d1e0a29438b378a416768b7164aaa7d793</citedby><cites>FETCH-LOGICAL-c633t-601d9fbfa4a8703b175ab1f0611d486d1e0a29438b378a416768b7164aaa7d793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1989902476/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1989902476?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29358626$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1470396$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Soo Jin</creatorcontrib><creatorcontrib>Kang, Ju-Hyung</creatorcontrib><creatorcontrib>Mutlu, Mehmet</creatorcontrib><creatorcontrib>Park, Joonsuk</creatorcontrib><creatorcontrib>Park, Woosung</creatorcontrib><creatorcontrib>Goodson, Kenneth E.</creatorcontrib><creatorcontrib>Sinclair, Robert</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><creatorcontrib>Kik, Pieter G.</creatorcontrib><creatorcontrib>Brongersma, Mark L.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><title>Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>The ability to split an incident light beam into separate wavelength bands is central to a diverse set of optical applications, including imaging, biosensing, communication, photocatalysis, and photovoltaics. Entirely new opportunities are currently emerging with the recently demonstrated possibility to spectrally split light at a subwavelength scale with optical antennas. Unfortunately, such small structures offer limited spectral control and are hard to exploit in optoelectronic devices. Here, we overcome both challenges and demonstrate how within a single-layer metafilm one can laterally sort photons of different wavelengths below the free-space diffraction limit and extract a useful photocurrent. This chipscale demonstration of anti-Hermitian coupling between resonant photodetector elements also facilitates near-unity photon-sorting efficiencies, near-unity absorption, and a narrow spectral response (∼ 30 nm) for the different wavelength channels. This work opens up entirely new design paradigms for image sensors and energy harvesting systems in which the active elements both sort and detect photons.
Subwavelength photon sorting in photodetection systems with a narrow spectral bandwidth has remained elusive. The authors spectrally sort and detect photons by suppressing the near-field interaction and maximizing the far-field interactions between photodetector elements, achieving a spectral separation of 30 nm.</description><subject>639/624/399/1015</subject><subject>639/766/1130/2799</subject><subject>639/925/927/1021</subject><subject>Biosensors</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</subject><subject>Electric fields</subject><subject>Electrical engineering</subject><subject>electrodes - solar</subject><subject>Energy harvesting</subject><subject>ENGINEERING</subject><subject>Humanities and Social Sciences</subject><subject>Incident light</subject><subject>Light</subject><subject>materials and chemistry by design</subject><subject>MATERIALS SCIENCE</subject><subject>Microscopy</subject><subject>multidisciplinary</subject><subject>optics</subject><subject>Optoelectronic devices</subject><subject>phonons</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photometers</subject><subject>Photons</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>solar (photovoltaic)</subject><subject>Solar cells</subject><subject>solid state lighting</subject><subject>Spectra</subject><subject>Spectral control</subject><subject>Spectral sensitivity</subject><subject>Spectrum analysis</subject><subject>synthesis (novel materials)</subject><subject>synthesis (self-assembly)</subject><subject>thermal conductivity</subject><subject>Unity</subject><subject>Wavelength</subject><subject>Wavelengths</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kk1rFTEUhoMottT-ARcy6MbN1GSSycdGKEVtoaALXYczmczcXOYm1yRTuf_eTKctt4KBkJC85zkfvAi9JfiCYCo_JUYYFzUmZTdM8frwAp02mJGaiIa-PLqfoPOUtrgsqohk7DU6aRRtJW_4Kfpx6bOrr23cuezAV_tNyKG32ZocYjWAcZPLkJ0fKzsMzjjrc5Xm7g_c2cn6MW_WEF-lEBfZG_RqgCnZ84fzDP36-uXn1XV9-_3bzdXlbW04pbnmmPRq6AZgIAWmHREtdGTAnJCeSd4Ti6FRjMqOCgmMcMFlJwhnACB6oegZulm5fYCt3ke3g3jQAZy-fwhx1FAKMpPVVLatMRQwWMM475VljMge2wJUlNHC-ryy9nO3s70pPUaYnkGf_3i30WO4060QEvMF8H4FhJSdTsaV-W1M8L6MURNWGlS8iD4-ZInh92xT1juXjJ0m8DbMSROlMJMKN0tzH_6RbsMcfZlnUcmia5hYgM2qMjGkFO3wVDHBejGJXk2ii0n0vUn0oQS9O-71KeTREkVAV0EqX3608Sj3_7F_AV8HyCM</recordid><startdate>20180122</startdate><enddate>20180122</enddate><creator>Kim, Soo Jin</creator><creator>Kang, Ju-Hyung</creator><creator>Mutlu, Mehmet</creator><creator>Park, Joonsuk</creator><creator>Park, Woosung</creator><creator>Goodson, Kenneth E.</creator><creator>Sinclair, Robert</creator><creator>Fan, Shanhui</creator><creator>Kik, Pieter G.</creator><creator>Brongersma, Mark L.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180122</creationdate><title>Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting</title><author>Kim, Soo Jin ; Kang, Ju-Hyung ; Mutlu, Mehmet ; Park, Joonsuk ; Park, Woosung ; Goodson, Kenneth E. ; Sinclair, Robert ; Fan, Shanhui ; Kik, Pieter G. ; Brongersma, Mark L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-601d9fbfa4a8703b175ab1f0611d486d1e0a29438b378a416768b7164aaa7d793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/624/399/1015</topic><topic>639/766/1130/2799</topic><topic>639/925/927/1021</topic><topic>Biosensors</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY</topic><topic>Electric fields</topic><topic>Electrical engineering</topic><topic>electrodes - solar</topic><topic>Energy harvesting</topic><topic>ENGINEERING</topic><topic>Humanities and Social Sciences</topic><topic>Incident light</topic><topic>Light</topic><topic>materials and chemistry by design</topic><topic>MATERIALS SCIENCE</topic><topic>Microscopy</topic><topic>multidisciplinary</topic><topic>optics</topic><topic>Optoelectronic devices</topic><topic>phonons</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photometers</topic><topic>Photons</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>solar (photovoltaic)</topic><topic>Solar cells</topic><topic>solid state lighting</topic><topic>Spectra</topic><topic>Spectral control</topic><topic>Spectral sensitivity</topic><topic>Spectrum analysis</topic><topic>synthesis (novel materials)</topic><topic>synthesis (self-assembly)</topic><topic>thermal conductivity</topic><topic>Unity</topic><topic>Wavelength</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Soo Jin</creatorcontrib><creatorcontrib>Kang, Ju-Hyung</creatorcontrib><creatorcontrib>Mutlu, Mehmet</creatorcontrib><creatorcontrib>Park, Joonsuk</creatorcontrib><creatorcontrib>Park, Woosung</creatorcontrib><creatorcontrib>Goodson, Kenneth E.</creatorcontrib><creatorcontrib>Sinclair, Robert</creatorcontrib><creatorcontrib>Fan, Shanhui</creatorcontrib><creatorcontrib>Kik, Pieter G.</creatorcontrib><creatorcontrib>Brongersma, Mark L.</creatorcontrib><creatorcontrib>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</creatorcontrib><creatorcontrib>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Open Access: DOAJ - Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Soo Jin</au><au>Kang, Ju-Hyung</au><au>Mutlu, Mehmet</au><au>Park, Joonsuk</au><au>Park, Woosung</au><au>Goodson, Kenneth E.</au><au>Sinclair, Robert</au><au>Fan, Shanhui</au><au>Kik, Pieter G.</au><au>Brongersma, Mark L.</au><aucorp>Energy Frontier Research Centers (EFRC) (United States). Light-Material Interactions in Energy Conversion (LMI)</aucorp><aucorp>Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States). National Energy Research Scientific Computing Center (NERSC)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2018-01-22</date><risdate>2018</risdate><volume>9</volume><issue>1</issue><spage>316</spage><epage>7</epage><pages>316-7</pages><artnum>316</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>The ability to split an incident light beam into separate wavelength bands is central to a diverse set of optical applications, including imaging, biosensing, communication, photocatalysis, and photovoltaics. Entirely new opportunities are currently emerging with the recently demonstrated possibility to spectrally split light at a subwavelength scale with optical antennas. Unfortunately, such small structures offer limited spectral control and are hard to exploit in optoelectronic devices. Here, we overcome both challenges and demonstrate how within a single-layer metafilm one can laterally sort photons of different wavelengths below the free-space diffraction limit and extract a useful photocurrent. This chipscale demonstration of anti-Hermitian coupling between resonant photodetector elements also facilitates near-unity photon-sorting efficiencies, near-unity absorption, and a narrow spectral response (∼ 30 nm) for the different wavelength channels. This work opens up entirely new design paradigms for image sensors and energy harvesting systems in which the active elements both sort and detect photons.
Subwavelength photon sorting in photodetection systems with a narrow spectral bandwidth has remained elusive. The authors spectrally sort and detect photons by suppressing the near-field interaction and maximizing the far-field interactions between photodetector elements, achieving a spectral separation of 30 nm.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29358626</pmid><doi>10.1038/s41467-017-02496-y</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2018-01, Vol.9 (1), p.316-7, Article 316 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3855cc3a0aec466d9e4418d0eb719343 |
source | Open Access: PubMed Central; Publicly Available Content Database; Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/624/399/1015 639/766/1130/2799 639/925/927/1021 Biosensors CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY Electric fields Electrical engineering electrodes - solar Energy harvesting ENGINEERING Humanities and Social Sciences Incident light Light materials and chemistry by design MATERIALS SCIENCE Microscopy multidisciplinary optics Optoelectronic devices phonons Photoelectric effect Photoelectric emission Photometers Photons Photovoltaic cells Photovoltaics Science Science (multidisciplinary) solar (photovoltaic) Solar cells solid state lighting Spectra Spectral control Spectral sensitivity Spectrum analysis synthesis (novel materials) synthesis (self-assembly) thermal conductivity Unity Wavelength Wavelengths |
title | Anti-Hermitian photodetector facilitating efficient subwavelength photon sorting |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T17%3A06%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anti-Hermitian%20photodetector%20facilitating%20efficient%20subwavelength%20photon%20sorting&rft.jtitle=Nature%20communications&rft.au=Kim,%20Soo%20Jin&rft.aucorp=Energy%20Frontier%20Research%20Centers%20(EFRC)%20(United%20States).%20Light-Material%20Interactions%20in%20Energy%20Conversion%20(LMI)&rft.date=2018-01-22&rft.volume=9&rft.issue=1&rft.spage=316&rft.epage=7&rft.pages=316-7&rft.artnum=316&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-017-02496-y&rft_dat=%3Cproquest_doaj_%3E1990489029%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c633t-601d9fbfa4a8703b175ab1f0611d486d1e0a29438b378a416768b7164aaa7d793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1989902476&rft_id=info:pmid/29358626&rfr_iscdi=true |