Loading…
Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc-Wen Hysteresis
In order to maintain robotic manipulators at a high level of performance, their controllers should be able to address nonlinearities in the closed-loop system, such as input nonlinearities. Meanwhile, computational efficiency is also required for real-time implementation. In this paper, an unknown i...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2019-06, Vol.19 (12), p.2776 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3 |
container_end_page | |
container_issue | 12 |
container_start_page | 2776 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 19 |
creator | Xie, Kan Lai, Yue Li, Weijun |
description | In order to maintain robotic manipulators at a high level of performance, their controllers should be able to address nonlinearities in the closed-loop system, such as input nonlinearities. Meanwhile, computational efficiency is also required for real-time implementation. In this paper, an unknown input Bouc-Wen hysteresis control problem is investigated for robotic manipulators using adaptive control and a dynamical gain-based approach. The dynamics of hysteresis are modeled as an additional control unit in the closed-loop system and are integrated with the robotic manipulators. Two adaptive parameters are developed for improving the computational efficiency of the proposed control scheme, based on which the outputs of robotic manipulators are driven to track desired trajectories. Lyapunov theory is adopted to prove the effectiveness of the proposed method. Moreover, the tracking error is improved from ultimately bounded to asymptotic tracking compared to most of the existing results. This is of important significance to improve the control quality of robotic manipulators with unknown input Bouc-Wen hysteresis. Numerical examples including fixed-point and trajectory controls are provided to show the validity of our method. |
doi_str_mv | 10.3390/s19122776 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3863ca4df9ec49b399c427d1ff16a9a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3863ca4df9ec49b399c427d1ff16a9a0</doaj_id><sourcerecordid>2245605623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3</originalsourceid><addsrcrecordid>eNpdkktvEzEURkcIREthwR9AltjAYsCvseMNUhu1NFIREmrF0vLcsVOnE3tqz7Tk39chJWpZ-XV0dO_nW1XvCf7CmMJfM1GEUinFi-qQcMrrGaX45ZP9QfUm5xXGlDE2e10dsIKLGW8Oqz_zuB6m0Yw-BtOjU-c8eBtgU5-YbDt03Jlh9HcWXSYDNz4s0TyGMcUeuZjQr9jG0QP6YYIfpt6MMWV078drdBVuQrwPaBGKHZ3ECerfNqDzTR5tstnnt9UrZ_ps3z2uR9XV2enl_Ly--Pl9MT--qIELNdaGYSKdEtBy2TEmAQshBcFtyykwkBSoc4Cxk1Rao6AQBAOjvGUllHI-qhY7bxfNSg_Jr03a6Gi8_nsR01KbVHrorWYzwcDwzikLXLVMKeBUdsQ5IowyuLi-7VzD1K5tB7YkYfpn0ucvwV_rZbzTQjBCGlYEnx4FKd5ONo967TPYvjfBxilrSnkjcCPoFv34H7qKUyp_VKhtJowT1RTq846CFHNO1u2LIVhvZ0PvZ6OwH55Wvyf_DQN7AAQhtTI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301734195</pqid></control><display><type>article</type><title>Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc-Wen Hysteresis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Xie, Kan ; Lai, Yue ; Li, Weijun</creator><creatorcontrib>Xie, Kan ; Lai, Yue ; Li, Weijun</creatorcontrib><description>In order to maintain robotic manipulators at a high level of performance, their controllers should be able to address nonlinearities in the closed-loop system, such as input nonlinearities. Meanwhile, computational efficiency is also required for real-time implementation. In this paper, an unknown input Bouc-Wen hysteresis control problem is investigated for robotic manipulators using adaptive control and a dynamical gain-based approach. The dynamics of hysteresis are modeled as an additional control unit in the closed-loop system and are integrated with the robotic manipulators. Two adaptive parameters are developed for improving the computational efficiency of the proposed control scheme, based on which the outputs of robotic manipulators are driven to track desired trajectories. Lyapunov theory is adopted to prove the effectiveness of the proposed method. Moreover, the tracking error is improved from ultimately bounded to asymptotic tracking compared to most of the existing results. This is of important significance to improve the control quality of robotic manipulators with unknown input Bouc-Wen hysteresis. Numerical examples including fixed-point and trajectory controls are provided to show the validity of our method.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19122776</identifier><identifier>PMID: 31226845</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>adaptive control ; Asymptotic methods ; computational efficiency ; Computing time ; Efficiency ; Feedback control ; Hysteresis ; Laboratories ; Manipulators ; Parameter estimation ; Robot arms ; Robot control ; robotic manipulators ; Robotics ; Robust control ; sensing and control ; Sensors ; Trajectory control ; Wireless networks</subject><ispartof>Sensors (Basel, Switzerland), 2019-06, Vol.19 (12), p.2776</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3</citedby><cites>FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3</cites><orcidid>0000-0002-2842-6439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2301734195/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2301734195?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25728,27898,27899,36986,36987,44563,53763,53765,75093</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31226845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Kan</creatorcontrib><creatorcontrib>Lai, Yue</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><title>Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc-Wen Hysteresis</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In order to maintain robotic manipulators at a high level of performance, their controllers should be able to address nonlinearities in the closed-loop system, such as input nonlinearities. Meanwhile, computational efficiency is also required for real-time implementation. In this paper, an unknown input Bouc-Wen hysteresis control problem is investigated for robotic manipulators using adaptive control and a dynamical gain-based approach. The dynamics of hysteresis are modeled as an additional control unit in the closed-loop system and are integrated with the robotic manipulators. Two adaptive parameters are developed for improving the computational efficiency of the proposed control scheme, based on which the outputs of robotic manipulators are driven to track desired trajectories. Lyapunov theory is adopted to prove the effectiveness of the proposed method. Moreover, the tracking error is improved from ultimately bounded to asymptotic tracking compared to most of the existing results. This is of important significance to improve the control quality of robotic manipulators with unknown input Bouc-Wen hysteresis. Numerical examples including fixed-point and trajectory controls are provided to show the validity of our method.</description><subject>adaptive control</subject><subject>Asymptotic methods</subject><subject>computational efficiency</subject><subject>Computing time</subject><subject>Efficiency</subject><subject>Feedback control</subject><subject>Hysteresis</subject><subject>Laboratories</subject><subject>Manipulators</subject><subject>Parameter estimation</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>robotic manipulators</subject><subject>Robotics</subject><subject>Robust control</subject><subject>sensing and control</subject><subject>Sensors</subject><subject>Trajectory control</subject><subject>Wireless networks</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEURkcIREthwR9AltjAYsCvseMNUhu1NFIREmrF0vLcsVOnE3tqz7Tk39chJWpZ-XV0dO_nW1XvCf7CmMJfM1GEUinFi-qQcMrrGaX45ZP9QfUm5xXGlDE2e10dsIKLGW8Oqz_zuB6m0Yw-BtOjU-c8eBtgU5-YbDt03Jlh9HcWXSYDNz4s0TyGMcUeuZjQr9jG0QP6YYIfpt6MMWV078drdBVuQrwPaBGKHZ3ECerfNqDzTR5tstnnt9UrZ_ps3z2uR9XV2enl_Ly--Pl9MT--qIELNdaGYSKdEtBy2TEmAQshBcFtyykwkBSoc4Cxk1Rao6AQBAOjvGUllHI-qhY7bxfNSg_Jr03a6Gi8_nsR01KbVHrorWYzwcDwzikLXLVMKeBUdsQ5IowyuLi-7VzD1K5tB7YkYfpn0ucvwV_rZbzTQjBCGlYEnx4FKd5ONo967TPYvjfBxilrSnkjcCPoFv34H7qKUyp_VKhtJowT1RTq846CFHNO1u2LIVhvZ0PvZ6OwH55Wvyf_DQN7AAQhtTI</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Xie, Kan</creator><creator>Lai, Yue</creator><creator>Li, Weijun</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2842-6439</orcidid></search><sort><creationdate>20190620</creationdate><title>Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc-Wen Hysteresis</title><author>Xie, Kan ; Lai, Yue ; Li, Weijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adaptive control</topic><topic>Asymptotic methods</topic><topic>computational efficiency</topic><topic>Computing time</topic><topic>Efficiency</topic><topic>Feedback control</topic><topic>Hysteresis</topic><topic>Laboratories</topic><topic>Manipulators</topic><topic>Parameter estimation</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>robotic manipulators</topic><topic>Robotics</topic><topic>Robust control</topic><topic>sensing and control</topic><topic>Sensors</topic><topic>Trajectory control</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Kan</creatorcontrib><creatorcontrib>Lai, Yue</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health & Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health & Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Kan</au><au>Lai, Yue</au><au>Li, Weijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc-Wen Hysteresis</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-06-20</date><risdate>2019</risdate><volume>19</volume><issue>12</issue><spage>2776</spage><pages>2776-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In order to maintain robotic manipulators at a high level of performance, their controllers should be able to address nonlinearities in the closed-loop system, such as input nonlinearities. Meanwhile, computational efficiency is also required for real-time implementation. In this paper, an unknown input Bouc-Wen hysteresis control problem is investigated for robotic manipulators using adaptive control and a dynamical gain-based approach. The dynamics of hysteresis are modeled as an additional control unit in the closed-loop system and are integrated with the robotic manipulators. Two adaptive parameters are developed for improving the computational efficiency of the proposed control scheme, based on which the outputs of robotic manipulators are driven to track desired trajectories. Lyapunov theory is adopted to prove the effectiveness of the proposed method. Moreover, the tracking error is improved from ultimately bounded to asymptotic tracking compared to most of the existing results. This is of important significance to improve the control quality of robotic manipulators with unknown input Bouc-Wen hysteresis. Numerical examples including fixed-point and trajectory controls are provided to show the validity of our method.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31226845</pmid><doi>10.3390/s19122776</doi><orcidid>https://orcid.org/0000-0002-2842-6439</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2019-06, Vol.19 (12), p.2776 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_3863ca4df9ec49b399c427d1ff16a9a0 |
source | Publicly Available Content Database; PubMed Central |
subjects | adaptive control Asymptotic methods computational efficiency Computing time Efficiency Feedback control Hysteresis Laboratories Manipulators Parameter estimation Robot arms Robot control robotic manipulators Robotics Robust control sensing and control Sensors Trajectory control Wireless networks |
title | Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc-Wen Hysteresis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T10%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Efficiency-Based%20Adaptive%20Tracking%20Control%20for%20Robotic%20Manipulators%20with%20Unknown%20Input%20Bouc-Wen%20Hysteresis&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Xie,%20Kan&rft.date=2019-06-20&rft.volume=19&rft.issue=12&rft.spage=2776&rft.pages=2776-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19122776&rft_dat=%3Cproquest_doaj_%3E2245605623%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301734195&rft_id=info:pmid/31226845&rfr_iscdi=true |