Loading…

Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc-Wen Hysteresis

In order to maintain robotic manipulators at a high level of performance, their controllers should be able to address nonlinearities in the closed-loop system, such as input nonlinearities. Meanwhile, computational efficiency is also required for real-time implementation. In this paper, an unknown i...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-06, Vol.19 (12), p.2776
Main Authors: Xie, Kan, Lai, Yue, Li, Weijun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3
cites cdi_FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3
container_end_page
container_issue 12
container_start_page 2776
container_title Sensors (Basel, Switzerland)
container_volume 19
creator Xie, Kan
Lai, Yue
Li, Weijun
description In order to maintain robotic manipulators at a high level of performance, their controllers should be able to address nonlinearities in the closed-loop system, such as input nonlinearities. Meanwhile, computational efficiency is also required for real-time implementation. In this paper, an unknown input Bouc-Wen hysteresis control problem is investigated for robotic manipulators using adaptive control and a dynamical gain-based approach. The dynamics of hysteresis are modeled as an additional control unit in the closed-loop system and are integrated with the robotic manipulators. Two adaptive parameters are developed for improving the computational efficiency of the proposed control scheme, based on which the outputs of robotic manipulators are driven to track desired trajectories. Lyapunov theory is adopted to prove the effectiveness of the proposed method. Moreover, the tracking error is improved from ultimately bounded to asymptotic tracking compared to most of the existing results. This is of important significance to improve the control quality of robotic manipulators with unknown input Bouc-Wen hysteresis. Numerical examples including fixed-point and trajectory controls are provided to show the validity of our method.
doi_str_mv 10.3390/s19122776
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_3863ca4df9ec49b399c427d1ff16a9a0</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3863ca4df9ec49b399c427d1ff16a9a0</doaj_id><sourcerecordid>2245605623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3</originalsourceid><addsrcrecordid>eNpdkktvEzEURkcIREthwR9AltjAYsCvseMNUhu1NFIREmrF0vLcsVOnE3tqz7Tk39chJWpZ-XV0dO_nW1XvCf7CmMJfM1GEUinFi-qQcMrrGaX45ZP9QfUm5xXGlDE2e10dsIKLGW8Oqz_zuB6m0Yw-BtOjU-c8eBtgU5-YbDt03Jlh9HcWXSYDNz4s0TyGMcUeuZjQr9jG0QP6YYIfpt6MMWV078drdBVuQrwPaBGKHZ3ECerfNqDzTR5tstnnt9UrZ_ps3z2uR9XV2enl_Ly--Pl9MT--qIELNdaGYSKdEtBy2TEmAQshBcFtyykwkBSoc4Cxk1Rao6AQBAOjvGUllHI-qhY7bxfNSg_Jr03a6Gi8_nsR01KbVHrorWYzwcDwzikLXLVMKeBUdsQ5IowyuLi-7VzD1K5tB7YkYfpn0ucvwV_rZbzTQjBCGlYEnx4FKd5ONo967TPYvjfBxilrSnkjcCPoFv34H7qKUyp_VKhtJowT1RTq846CFHNO1u2LIVhvZ0PvZ6OwH55Wvyf_DQN7AAQhtTI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2301734195</pqid></control><display><type>article</type><title>Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc-Wen Hysteresis</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Xie, Kan ; Lai, Yue ; Li, Weijun</creator><creatorcontrib>Xie, Kan ; Lai, Yue ; Li, Weijun</creatorcontrib><description>In order to maintain robotic manipulators at a high level of performance, their controllers should be able to address nonlinearities in the closed-loop system, such as input nonlinearities. Meanwhile, computational efficiency is also required for real-time implementation. In this paper, an unknown input Bouc-Wen hysteresis control problem is investigated for robotic manipulators using adaptive control and a dynamical gain-based approach. The dynamics of hysteresis are modeled as an additional control unit in the closed-loop system and are integrated with the robotic manipulators. Two adaptive parameters are developed for improving the computational efficiency of the proposed control scheme, based on which the outputs of robotic manipulators are driven to track desired trajectories. Lyapunov theory is adopted to prove the effectiveness of the proposed method. Moreover, the tracking error is improved from ultimately bounded to asymptotic tracking compared to most of the existing results. This is of important significance to improve the control quality of robotic manipulators with unknown input Bouc-Wen hysteresis. Numerical examples including fixed-point and trajectory controls are provided to show the validity of our method.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s19122776</identifier><identifier>PMID: 31226845</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>adaptive control ; Asymptotic methods ; computational efficiency ; Computing time ; Efficiency ; Feedback control ; Hysteresis ; Laboratories ; Manipulators ; Parameter estimation ; Robot arms ; Robot control ; robotic manipulators ; Robotics ; Robust control ; sensing and control ; Sensors ; Trajectory control ; Wireless networks</subject><ispartof>Sensors (Basel, Switzerland), 2019-06, Vol.19 (12), p.2776</ispartof><rights>2019. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019 by the authors. 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3</citedby><cites>FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3</cites><orcidid>0000-0002-2842-6439</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2301734195/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2301734195?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25728,27898,27899,36986,36987,44563,53763,53765,75093</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31226845$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Kan</creatorcontrib><creatorcontrib>Lai, Yue</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><title>Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc-Wen Hysteresis</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>In order to maintain robotic manipulators at a high level of performance, their controllers should be able to address nonlinearities in the closed-loop system, such as input nonlinearities. Meanwhile, computational efficiency is also required for real-time implementation. In this paper, an unknown input Bouc-Wen hysteresis control problem is investigated for robotic manipulators using adaptive control and a dynamical gain-based approach. The dynamics of hysteresis are modeled as an additional control unit in the closed-loop system and are integrated with the robotic manipulators. Two adaptive parameters are developed for improving the computational efficiency of the proposed control scheme, based on which the outputs of robotic manipulators are driven to track desired trajectories. Lyapunov theory is adopted to prove the effectiveness of the proposed method. Moreover, the tracking error is improved from ultimately bounded to asymptotic tracking compared to most of the existing results. This is of important significance to improve the control quality of robotic manipulators with unknown input Bouc-Wen hysteresis. Numerical examples including fixed-point and trajectory controls are provided to show the validity of our method.</description><subject>adaptive control</subject><subject>Asymptotic methods</subject><subject>computational efficiency</subject><subject>Computing time</subject><subject>Efficiency</subject><subject>Feedback control</subject><subject>Hysteresis</subject><subject>Laboratories</subject><subject>Manipulators</subject><subject>Parameter estimation</subject><subject>Robot arms</subject><subject>Robot control</subject><subject>robotic manipulators</subject><subject>Robotics</subject><subject>Robust control</subject><subject>sensing and control</subject><subject>Sensors</subject><subject>Trajectory control</subject><subject>Wireless networks</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkktvEzEURkcIREthwR9AltjAYsCvseMNUhu1NFIREmrF0vLcsVOnE3tqz7Tk39chJWpZ-XV0dO_nW1XvCf7CmMJfM1GEUinFi-qQcMrrGaX45ZP9QfUm5xXGlDE2e10dsIKLGW8Oqz_zuB6m0Yw-BtOjU-c8eBtgU5-YbDt03Jlh9HcWXSYDNz4s0TyGMcUeuZjQr9jG0QP6YYIfpt6MMWV078drdBVuQrwPaBGKHZ3ECerfNqDzTR5tstnnt9UrZ_ps3z2uR9XV2enl_Ly--Pl9MT--qIELNdaGYSKdEtBy2TEmAQshBcFtyykwkBSoc4Cxk1Rao6AQBAOjvGUllHI-qhY7bxfNSg_Jr03a6Gi8_nsR01KbVHrorWYzwcDwzikLXLVMKeBUdsQ5IowyuLi-7VzD1K5tB7YkYfpn0ucvwV_rZbzTQjBCGlYEnx4FKd5ONo967TPYvjfBxilrSnkjcCPoFv34H7qKUyp_VKhtJowT1RTq846CFHNO1u2LIVhvZ0PvZ6OwH55Wvyf_DQN7AAQhtTI</recordid><startdate>20190620</startdate><enddate>20190620</enddate><creator>Xie, Kan</creator><creator>Lai, Yue</creator><creator>Li, Weijun</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2842-6439</orcidid></search><sort><creationdate>20190620</creationdate><title>Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc-Wen Hysteresis</title><author>Xie, Kan ; Lai, Yue ; Li, Weijun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>adaptive control</topic><topic>Asymptotic methods</topic><topic>computational efficiency</topic><topic>Computing time</topic><topic>Efficiency</topic><topic>Feedback control</topic><topic>Hysteresis</topic><topic>Laboratories</topic><topic>Manipulators</topic><topic>Parameter estimation</topic><topic>Robot arms</topic><topic>Robot control</topic><topic>robotic manipulators</topic><topic>Robotics</topic><topic>Robust control</topic><topic>sensing and control</topic><topic>Sensors</topic><topic>Trajectory control</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Kan</creatorcontrib><creatorcontrib>Lai, Yue</creatorcontrib><creatorcontrib>Li, Weijun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest - Health &amp; Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Kan</au><au>Lai, Yue</au><au>Li, Weijun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc-Wen Hysteresis</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2019-06-20</date><risdate>2019</risdate><volume>19</volume><issue>12</issue><spage>2776</spage><pages>2776-</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>In order to maintain robotic manipulators at a high level of performance, their controllers should be able to address nonlinearities in the closed-loop system, such as input nonlinearities. Meanwhile, computational efficiency is also required for real-time implementation. In this paper, an unknown input Bouc-Wen hysteresis control problem is investigated for robotic manipulators using adaptive control and a dynamical gain-based approach. The dynamics of hysteresis are modeled as an additional control unit in the closed-loop system and are integrated with the robotic manipulators. Two adaptive parameters are developed for improving the computational efficiency of the proposed control scheme, based on which the outputs of robotic manipulators are driven to track desired trajectories. Lyapunov theory is adopted to prove the effectiveness of the proposed method. Moreover, the tracking error is improved from ultimately bounded to asymptotic tracking compared to most of the existing results. This is of important significance to improve the control quality of robotic manipulators with unknown input Bouc-Wen hysteresis. Numerical examples including fixed-point and trajectory controls are provided to show the validity of our method.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>31226845</pmid><doi>10.3390/s19122776</doi><orcidid>https://orcid.org/0000-0002-2842-6439</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2019-06, Vol.19 (12), p.2776
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_3863ca4df9ec49b399c427d1ff16a9a0
source Publicly Available Content Database; PubMed Central
subjects adaptive control
Asymptotic methods
computational efficiency
Computing time
Efficiency
Feedback control
Hysteresis
Laboratories
Manipulators
Parameter estimation
Robot arms
Robot control
robotic manipulators
Robotics
Robust control
sensing and control
Sensors
Trajectory control
Wireless networks
title Computational Efficiency-Based Adaptive Tracking Control for Robotic Manipulators with Unknown Input Bouc-Wen Hysteresis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-27T10%3A12%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Efficiency-Based%20Adaptive%20Tracking%20Control%20for%20Robotic%20Manipulators%20with%20Unknown%20Input%20Bouc-Wen%20Hysteresis&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Xie,%20Kan&rft.date=2019-06-20&rft.volume=19&rft.issue=12&rft.spage=2776&rft.pages=2776-&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s19122776&rft_dat=%3Cproquest_doaj_%3E2245605623%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-a3017f96cb47d337c0667610bb42c3c72c2ffc00f727ea9c37c10c324b31919c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2301734195&rft_id=info:pmid/31226845&rfr_iscdi=true