Loading…
High-yield fabrication of monodisperse multilayer nanofibrous microparticles for advanced oral drug delivery applications
Recent advances in the use of nano- and microparticles in drug delivery, cell therapy, and tissue engineering have led to increasing attention towards nanostructured microparticulate formulations for maximum benefit from both nano- and micron sized features. Scalable manufacturing of monodisperse na...
Saved in:
Published in: | Heliyon 2024-05, Vol.10 (10), p.e30844-e30844, Article e30844 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent advances in the use of nano- and microparticles in drug delivery, cell therapy, and tissue engineering have led to increasing attention towards nanostructured microparticulate formulations for maximum benefit from both nano- and micron sized features. Scalable manufacturing of monodisperse nanostructured microparticles with tunable size, shape, content, and release rate remains a big challenge. Current technology, mainly comprises complex multi-step chemical procedures with limited control over these aspects. Here, we demonstrate a novel technique for high-yield fabrication of monodisperse monolayer and multilayer nanofibrous microparticles (MoNami and MuNaMi respectively). The fabrication procedure includes sequential electrospinning followed by micro-cutting at room temperature and transfer of particles for collection. The big advantage of the introduced technique is the potential to apply several polymer-drug combinations forming multilayer microparticles enjoying extracellular matrix (ECM)-mimicking architecture with tunable release profile. We demonstrate the fabrication and study the factors affecting the final three-dimensional structure. A model drug is encapsulated into a three-layer sheet (PLGA-pullulan-PLGA), and we demonstrate how the release profile changes from burst to sustain by simply cutting particles out of the electrospun sheet. We believe our fabrication method offers a unique and facile platform for realizing advanced microparticles for oral drug delivery applications.
[Display omitted]
•Scalable manufacturing of monodisperse nanostructured microparticles.•Fast and easy production without need to multi-step chemical procedures.•Sequential electrospinning followed by micro-cutting at room temperature.•Control over size, shape, multi-stack component, compactness and release. |
---|---|
ISSN: | 2405-8440 2405-8440 |
DOI: | 10.1016/j.heliyon.2024.e30844 |